
Managing Inventory for a Multi-divisional
Corporation with Cash Pooling

Problem definition: Cash pooling is a prevalent and powerful management tool that allows each division’s

cash balance to be transferred to a single account managed by the corporate treasury. We examine the

benefit of cash pooling on inventory replenishment for a corporation with multiple divisions, each replen-

ishing inventory to meet its local demand while receiving cash payments from customers. The corporation

can invest excess cash in assets to receive a return or finance inventory internally by selling the invested

assets. There are transaction costs for exchanging assets. The objective is to obtain the optimal joint cash

and inventory policy that maximizes the expected net worth (equity) of the corporation at the end of a

finite-time horizon.

Academic/Practical Relevance: While the reported benefits of cash pooling in the finance literature

are mainly associated with the reduction of financing costs, the value of cash pooling is not clear from a

perspective of improving operational efficiency. We fill the gap in this paper. The considered problem is

practically relevant as it is concerned with working capital management and academically relevant as we

relax the no-transaction-cost assumption in Modigliani and Miller (1958) and model the cash flow dynamics

generated by the operational decision.

Methodology: We formulate this problem into a dynamic program, and show that the problem is equivalent

to minimizing the expected total costs, consisting of the cash-related costs and the inventory-related costs.

Results: Due to curse of dimensionality, we provide a simple and effective heuristic derived from the con-

struction of an innovative lower bound to the optimal value function. Our lower bound improves the so-called

Lagrangian-relaxation bound and the induced-penalty bound in the literature. Our solution approach can

be applied to the classic one-warehouse-multi-retailer inventory system with non-stationary demands.

Managerial Implications: Our study provides guidance on a firm’s pooling strategy. When demands are

increasing and positively correlated (stationary and negatively correlated, respectively) between the divi-

sions, cash (inventory, respectively) pooling yields significant value whereas inventory (cash, respectively)

pooling yields marginal value. A firm should implement a full integration strategy by pooling both cash and

inventory when the demands are increasing and negatively correlated. In addition, the benefit of cash pooling

on reducing the inventory-related costs often outweighs that of reducing the cash-related costs, suggesting

that cash pooling is a powerful tool to reduce mismatches between demand and supply.
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1. Introduction

Working capital management is concerned with a firm’s short-term liquidity. Maintaining a healthy

working capital requires a firm to strike a balance between cash reserved for operational activities

and cash invested in assets for returns or growth. The biggest drain on a firm’s short-term cash flow

is inventory. That is, a firm often experiences cash shortage during the slow seasons or the growth

stage of products; see Grasby et al. (2007) for a company example. The former occurs because

of cash being trapped in the unsold inventory whereas the latter occurs because of insufficient

funds to stock inventory for the surging demand. Instead of short-term loans, which may be costly

or difficult to obtain during economic downturns, firms with products sold by separate business

affiliates or in dispersed geographical locations may consolidate cash within the entire organization

through a centralized treasury system. This is the so-called cash pooling strategy, which allows

divisions to borrow from one another to cover temporary deficits, and eliminates interest payments

on the short-term debt for financing inventory. In fact, the cash pooling strategy, a powerful tool

of internal financing, has been successfully implemented in many multi-national, multi-divisional

corporations, including Roche, Tyco International, and Lenovo, through in-house banks or third-

party financial services platforms (Zhang et al. 2012, Zhang et al. 2011, Zhang et al. 2012).

While the benefits of cash pooling have been reported in business cases and studied in the

finance literature, e.g., lower financing costs than external loans, reduction of interest paid, and

improving liquidity, they are centered around financial and managerial benefits. The value of cash

pooling on improving operational efficiency has not yet been examined because there is sparse

research that models the cash flow dynamics generated by the operational decision. Interestingly,

several consulting firms, such as BearingPoint, J.P. Morgan, and McKinsey, have noticed the need

of looking beyond the traditional finance-centric working capital practices and advocated a full

collaboration between procurement, logistics, and finance departments when managing working

capital decisions (BearingPoint 2011, Grasby et al. 2007, J.P. Morgan 2015). In this paper, we aim

to fill this gap by providing a model of such joint decision in the inventory context under cash

pooling.

We consider a firm with multiple divisions in dispersed locations. Each division replenishes

inventory from its supplier to meet the demand in each period. The demands between periods are

independent but not necessarily identical, and demands between divisions may be correlated. The

firm’s financial flows are centrally managed by the corporate treasury, which has a master account

that nets the cash balances between divisions in each period. Specifically, a division receives cash

payment after a customer order arrives and fulfills as much of the order as possible. Backorders
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are accumulated; inventory holding and backorder costs are calculated in each period. The cash

payment is transferred directly to the master account held by the corporate treasury, which in turn,

pays the ordered inventory to the suppliers. The firm needs to decide how much cash to reserve for

purchasing inventory so that the rest can be used for investing in assets (e.g., financial markets,

facility expansion, R&D, etc.) with a positive return. The value of the invested assets and the

accumulated returns are recorded in an investment account. The firm may sell the invested assets

with transaction costs if it needs to increase the cash holding (e.g., purchasing additional inventory

for an increasing demand). The objective is to obtain the optimal joint inventory replenishment

and cash reservation policy such that the expected net worth (equity) is maximized at the end of

the horizon.

We formulate this problem into a dynamic program and show that maximizing the expected

net worth is equivalent to minimizing the total expected costs (= inventory related costs plus

cash related costs). We first characterize the optimal cash retention policy – the firm monitors the

system working capital (i.e., cash and monetary inventory value in the system) at the beginning

of each period and maintains the cash holding within an interval determined by two thresholds.

However, due to curse of dimensionality, it is not possible to fully characterize the joint optimal

policy. Thus, from a perspective of implementation and revealing insights, we aim to derive a

simple and effective heuristic policy. In order to evaluate the performance of heuristic policies,

we construct a lower bound to the optimal cost. For the inventory model with a linear allocation

constraint, two lower bounds have appeared in the literature, i.e., the induced-penalty bound for

the i.i.d. demand model (Chen and Zheng 1994) and the Lagrangian-relaxation bound for the

finite-horizon model (Goel and Gutierrez 2011). Using a novel idea of introducing a parameter

that adjusts the cash holding amount in each period, we show that our lower bound dominates the

above two known ones. We refer to the parameter as the cash-holding multiplier. In fact, our lower

bound converges to the optimal value at the expense of computational efforts. More importantly,

we are able to derive a heuristic policy based on the lower bound functions. The heuristic policy

has a simple structure: the cash retention policy has exactly the same threshold structure as that of

the optimal one; the inventory policy for the division is a modified base-stock policy (i.e., ordering

up to a level determined by cash available). The exact heuristic policy parameters require an

input of effective cash-holding multipliers. We propose two methods: the static policy assumes

that the cash-holding multipliers are constants across all time periods; the dynamic policy solves

the best multipliers dynamically according to the system state in each period. A numerical study

suggests that the dynamic policy outperforms the static policy with a small margin, suggesting the
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importance of choosing an effective initial cash-holding multiplier. We note that our approach of

constructing the lower bound and the heuristic can be applied to the classic one-warehouse-multi-

retailer inventory system with non-stationary demands. As shown in Appendix A, the resulting

lower bound outperforms those in the multi-echelon literature. Finally, one can view our model as a

retailer who manages multiple products with a cash constraint. Thus, our results can comfortably

be applied to such a setting.

Our contributions are threefold. First, from an intellectual perspective, we incorporate cash flows

into the classic inventory model by relaxing the no-transaction-cost assumption in the Modigliani

and Miller (1958) theorem. We propose a new objective of maximizing the expected net worth

(equity), which generalizes the traditional cost-minimization objective in the inventory models. We

also advocate the importance of monitoring a new system state, i.e., system working capital – an

extension of echelon concept in the inventory literature – for the optimal joint decision. Second,

on the technical side, we characterize the optimal system working capital policy, and develop an

effective heuristic based on an innovative lower bound to the optimal value function. The solution

approach can be applied to classic multi-echelon distribution systems. Third, in terms of managerial

insights, our study provides guidance on a firm’s cash and inventory pooling strategies. While

pooling is always beneficial to firms, it often requires a costly investment in the infrastructure.

Our study suggests that a firm should implement a cash pooling strategy when the demands are

increasing and positively correlated between the divisions because inventory pooling yields marginal

value in this case. On the other hand, when the demands are stationary and negatively correlated, a

firm should implement an inventory pooling strategy. A firm can obtain the maximum benefit with

a full integration strategy by pooling both cash and inventory when the demands are increasing

and negatively correlated. Finally, while cash pooling reduces both the inventory-related costs and

the cash-related costs, the cost reduction of the former often exceeds that of the latter, suggesting

that the cash-pooling practice is a powerful tool to reduce mismatches between demand and supply.

The rest of the paper is organized as follows. §2 reviews the relevant literature. We highlight

the differences between our model and those in the literature. §3 describes the model in detail.

§4 characterizes the properties of the optimal cash management policy. §5 constructs a novel

lower bound on the optimal cost. §6 introduces simple and effective heuristic policies based on

the optimality analysis and the lower bound functions. §7 presents numerical results. §8 concludes

our work and discusses some extensions. Appendix A demonstrates how our methodology can be

applied to a multi-echelon distribution system and generates a new lower bound that outperforms

those in the literature. Appendix B shows all proofs.
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2. Literature Review

There are primarily five streams of research related to our work: cash management, capacitated

inventory systems, multi-echelon distribution systems, integrated cash and inventory models, and

investment and consumption models in the economics literature. From a modeling perspective, this

paper is a generalization of a serial supply chain with multiple divisions studied in Luo and Shang

(2015) to a distributed supply chain. Thus, to save space, we only review papers most relevant

to our model and refer the reader to Luo and Shang (2015) for a complete review on the cash

management and capacitated inventory literature, as well as the other related papers.

The considered problem and the classic distribution system share some similarities. In particular,

the cash level held at the corporate treasury is similar to the inventory amount held at the ware-

house, and both models require an allocation of resources to the downstream locations. For this

reason, we first review multi-echelon distribution (or one-warehouse-multi-retailer) systems. In the

seminal work of Clark and Scarf (1960), the authors point out that an optimal policy, if it exists,

would be very difficult to compute and implement due to curse of dimensionality. Nevertheless,

under the so-called balance assumption (i.e., inventory can be instantaneously transferred between

the downstream locations), they show that an echelon base-stock policy is optimal. Federgruen

and Zipkin (1984) extend this result to an infinite-horizon problem. They show that the resulting

echelon base-stock levels are stationary and provide a simple algorithm to compute the base-stock

levels. Chen and Zheng (1994) consider the i.i.d. demand model with fixed order costs in each

location. They streamline and simplify the optimality proof of Clark and Scarf, and construct two

lower bounds based on innovative cost allocation schemes. Given that the optimal policy is difficult

to obtain, researchers instead focus on easy and implementable policies. The research work in this

category typically provides the optimization algorithms for given policies or develops heuristics to

facilitate the implementation. For the systems without fixed order costs, base-stock policies are

often considered, e.g., Sherbrooke (1968), Graves (1985), Axsäter (1990), and Gallego et al. (2007).

We refer the reader to Simchi-Levi and Zhao (2012) and Shang (2011) for an extensive review. The

existing results mainly focus on the system with i.i.d. demands.

Our work differs from those in the literature in three aspects. First, most papers for the distri-

bution system focus on the infinite-horizon model with given stationary policies. Our model, on

the other hand, considers the finite horizon with nonstationary and correlated demands and we

aim to obtain the optimal policy. Second, unlike the inventory level resumed by replenishment at

the warehouse in the distribution system, the cash level in our model is resumed not only by the

cash retention decision, but also by the random sales received from the customers. In addition, the
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cash level and the inventory value together define an important state variable, i.e., system working

capital, which influences the optimal joint decision. Lastly, unlike the linear ordering costs in the

distribution system, following Baumol (1952), we assume that linear transaction costs incur when

the cash is transferred between the master account and the investment account. These piece-wise

linear transaction costs make the cash retention policy more complicated.

We next review papers that incorporate financial flows into inventory systems. Most of these

papers are based on single-stage systems, see Buzacott and Zhang (2004), Chao et al. (2008),

Babich (2010), Yang and Birge (2011), Tanrisever et al. (2012), Li et al. (2013), and references

therein. A few papers study the joint operation and financial decisions in serial inventory systems.

Hu and Sobel (2007) consider a two-stage model with financial constraints. The objective is to

maximize the expected dividends in a finite horizon. They show that an echelon base-stock policy

is no longer optimal. Song et al. (2014) introduce an accounting framework to study the impact of

different payment times on the resulting system cost. Protopappa-Sieke and Seifert (2010) consider

a two-stage supply chain and reveal qualitative insights on the allocation of working capital between

the supply chain partners via a simulation study. The motivation of this work is most related to

Luo and Shang (2015). They consider a serial system that integrates cash flows into material flows

whereas we study a distribution system. Nevertheless, due to the cash allocation, our analysis is very

different from that of Luo and Shang. The only paper to our knowledge that incorporates financial

flows into a distribution system is Chou et al. (2013). They consider a distribution network in

which trade credit contracts are employed between the supplier and retailers who face deterministic

demands. They show that the supplier who receives a long trade credit term from its external

vendor may not provide a long trade credit term to its retailers. Their research question as well as

the model setup are quite different from ours.

Finally, we notice that our model is related to the investment and consumption models in the

economics literature (e.g., Constantinides 1979, Shreve and Soner 1994, Liu 2004, Kallsen and

Muhle-Karbe 2017 and references therein). Most of these papers attempt to investigate the optimal

investment and consumption decisions with multiple risky assets in the presence of transaction

costs. The decision of transferring cash between the master account and investment account in

our model is similar to the models in this literature. The main difference is that, instead of using

consumption as a decision variable to deplete cash, our model considers inventory ordering, which

involves complicated system dynamics that lead to random cash flows.
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3. Model and Problem Formulation

We consider a centralized-control supply chain in which a firm manages the inventory and cash

flows for its N divisions over T periods. Without loss of generality, for simplicity, we set N = 2 for

the subsequent discussions. In each period, each division i reviews its inventory level (= on-hand

inventory - backorders) and pipeline inventory, and places an order to an outside supplier with

ample stock to satisfy the local demand Di. Demands are stochastic and independent between

periods but not necessarily identical. The demands between divisions may be correlated. There are

no inventory transshipments between the divisions. (For example, the divisions may be located in

dispersed regions so transshipment is not economically feasible.) The replenishment lead time for

division i, denoted by Li, is a positive constant. Unsatisfied demands are fully backlogged.

To better manage cash, the firm implements a centralized treasury system with cash pooling;

that is, the firm creates a master account that consolidates cash flows related to operational activ-

ities (i.e., inventory payments paid to the suppliers and collected from customers) for the entire

supply chain. Specifically, at the beginning of each period, after receiving customer’s payments

from the previous period, the firm decides an amount of cash kept in the master account used for

inventory replenishment for the current period. The remaining cash will be used for investments,

i.e., purchasing a portfolio of assets recorded in an investment account. We assume that the invest-

ment yields a return rate η in each period. On the other hand, the firm may finance inventory

internally by selling the invested assets if necessary. We refer to the determination of cash amount

for inventory replenishment as the cash retention decision. The amount of available cash in the

master account determines the total inventory amount that can be ordered by both divisions. We

consider the so-called pay-on-order scheme, i.e., a payment is created when an order is placed or

demand arrives. We assume that all cash transfers are instantaneous. Figure 1 shows the inventory

and cash flows in the system. The circle represents the master account, and the oval represents the

investment account. The divisions are denoted by rectangles, and they order from outside suppliers

which are represented by triangles. Inventory and cash flows are denoted by solid and dash arrows,

respectively.

The cash retention decision under the two-account setting reflects the practice. A firm typi-

cally does not hold unnecessary cash for operations as it loses the potential benefit from external

investments. On the other hand, selling the invested assets for cash to assist operations usually is

less costly than external short-term financing.1 Thus, we assume that the firm finances inventory

1 The Pecking Order Theory or Pecking Order Model (Myers and Majluf 1984) states that the cost of financing
increases as companies use sources of funds where the degree of asymmetric information is higher. As companies raise
more and more capital, it becomes increasingly hard to obtain such funding internally. Instead, they are forced to
resort to bank debt and public equity. These sources of funding tend to be more expensive.
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Figure 1 Inventory and cash flows for a two-divisional firm.

internally before making short-term loans externally.

There are unit transaction costs βI and βO for purchasing and selling assets, respectively. Note

that the invested assets in our model can be either short-term, such as interest gains from the

money markets, or long-term, such as fixed assets. In general, the transaction cost is higher when

the invested assets are less liquid (Miller 1965).2 Our modeling approach has flexibility to describe

different investment activities. In fact, this two-account setting is consistent with the cash manage-

ment literature (e.g., Baumol 1952, Tobin 1956, and Miller and Orr 1966), which does not consider

the detailed inventory dynamics. More importantly, the existence of transaction costs represents

a financial friction, which relaxes one assumption made in the Modigliani-Miller theorem (1958).

This relaxation makes the considered model of joint operational and financial flows relevant.3 We

assume 0≤ βO < η < βO +αβI , where α is a discount rate. (As we shall see later, α= 1/(1 + η).) If

the second inequality does not hold, the corporation will never invest in the external portfolio. Sim-

ilarly, if the third inequality fails, the corporation will never hold any cash in the master account.

Note that βO is often relatively small in practice as transferring cash for external investments

within a firm causes minimal costs.

Define ci and pi as the unit ordering cost and selling price of the product for division i, respec-

tively. We assume that ci(1 + η)< pi, for i= 1,2, which means the unit profit is higher than the

2 Examples of transaction costs are broker’s fees, opportunity losses of selling assets, the cost of finding buyers and
sellers, bargaining costs, administration costs.

3 When the financial markets are perfect, i.e., no taxes, no transaction costs, no bankruptcy costs, no information
asymmetry, and equivalence of borrowing costs for both companies and investors (borrowing rate equals return rate),
the MM theory states that a firm’s value is determined by its earning power and by the risk of its underlying assets
(capital structure), and this value is independent of the way it chooses to finance its investments. This is the so-called
the capital structure irrelevance principle. It can be shown that when both βI and βO are zero, our model reduces to
a classic inventory problem with two divisions replenishing inventory to fulfill their own demand.
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return from the external investment; otherwise, the corporation would never invest in inventory.

For division i, there is a physical holding cost hi for each unit of inventory held in each period and

a physical backorder cost bi for each unit of backorders in each period. Here, the physical holding

cost rate refers to the costs related to inventory storage, insurances, shrinkage, etc., which does not

include the financial opportunity cost due to holding inventory. The physical backorder cost rate

should be viewed as the same way – it is the tangible, monetary penalty costs related to backlog-

ging, e.g., expediting delivery costs. The objective of the corporation is to obtain the optimal joint

cash retention and inventory replenishment policy such that the expected net worth (i.e., equity)

at the end of the horizon is maximized. The corporation’s net worth is equal to the sum of the

value of the investment assets, the cash balance in the master account, and the total inventory

value.4 Notice that we do not consider the long-term assets and the liabilities. Thus, maximizing

the expected net worth is the same as maximizing the expected working capital assumed in Luo

and Shang (2018). As shown later, this objective is also equivalent to minimizing the total cash-

and inventory-related costs assumed in Luo and Shang (2015).

The sequence of events in a period is summarized below (see Figure 2). At the beginning of

the period, (1) division i receives the order placed Li periods ago. After reviewing the inventory

status of the two divisions and the cash balance in the master account, (2) the firm makes the

cash retention decision and places an order to the outside vendor for each division; the payments

to the vendors are immediately deducted from the master account. During the period, demands

are realized and sales revenue is transferred to the master account. At the end of the period,

the physical inventory holding and backorder costs and cash transaction costs are calculated and

deducted from the master account.

For periods t= 1,2, ..., T, and divisions i= 1,2, we define the following variables:

x̂i,t = inventory level at division i after event (1);

zi,t = order quantity for division i in event (2);

qi,t = (q1i,t, q
2
i,t, ..., q

(Li−1)
i,t ), the pipeline inventory for division i after event (1), where qτi,t is the units

to be delivered in τ periods, τ = 1,2, ...,Li− 1;

ŵt = cash balance in the master account before event (2);

It = gross value of external investments before event (2);

4 We assume that there are no trade credit contracts (accounts receivable and payable) between the firm and the
suppliers. Having trade credit terms, such as net terms, only changes the timing of cash flows, but does not affect the
essence of the problem.
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Figure 2 The events timeline in one period.

Wt = net worth of the corporation before event (2);

vt = cash amount transferred from the external investment to the master account in event (2).

Note that the decision variable vt could be positive or negative. In particular, v+t represents the cash

transferred into the master account, whereas v−t is the cash transferred to the external investment

account (we define x+ = max{x,0} and x− = max{−x,0}). The total cash transaction cost in period

t can be calculated by F (vt) = βIv
+
t +βOv

−
t . The net worth Wt is the sum of the gross value of the

external investment assets, the cash balance in the master account, and the total inventory value,

i.e., Wt = It + ŵt +
∑2

i=1 ci(x̂i,t + 1Tqi,t), where 1 represents a column vector with all elements

equal to one.

We define Ĥi(x) = hix
+ + bix

−, which represents the physical inventory holding and backorder

costs at division i in period t given the end-of-period inventory level x. The system dynamics can

be characterized as follows: for i= 1,2,

x̂i,t+1 = x̂i,t + q1i,t−D1,t, (1)

qi,t+1 = (q2i,t, ..., q
(Li−1)
i,t , zi,t), (2)

ŵt+1 = ŵt + vt−
2∑
i=1

(cizi,t) +
2∑
i=1

(piDi,t)−F (vt)−
2∑
i=1

Ĥi(x̂i,t−Di,t), (3)

It+1 = (1 + η)(It− vt). (4)

Equations (1) and (2) describe the inventory dynamics. As shown in (3), the transaction cost and

physical inventory holding and backorder costs are deducted from the master account. Equation

(4) describes that the value of external investments is increased by (1 + η).5

5 Equation (4) implies that the firm can borrow externally with the borrowing rate η if the investment account is
negative. This assumption is standard in the cash management literature; see, for example, Baumol (1952), p.525.
This is a rare event that does not affect the essence of the model – A comprehensive simulation study with different
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We first consider the constraints on the inventory and cash decisions. The total inventory value

that can be ordered by both divisions should be less than the cash balance in the master account

after the cash retention decision, i.e., ŵt + vt − c1z1,t − c2z2,t ≥ 0. Thus, the feasible decision set

Ŝt(ŵt) in period t can be expressed as

Ŝt(ŵt) = {vt, z1,t, z2,t| z1,t ≥ 0, z2,t ≥ 0, (ŵt + vt)≥ (c1z1,t + c2z2,t)} .

We next turn to the objective function. From Equations (1) - (4), the net worth in period t+ 1

is

Wt+1 = It+1 + ŵt+1 +
2∑
i=1

ci(x̂i,t+1 +1Tqi,t+1)

= (1 + η)Wt +
2∑
i=1

[(pi− ci)Di,t]

−η[ŵt + vt +
2∑
i=1

ci(x̂i,t +1Tqi,t)]−F (vt)−
2∑
i=1

Ĥi(x̂i,t−Di,t). (5)

Thus, by applying Equation (5) recursively, the corporation’s end-of-horizon net worth can be

written as

WT+1 = (1 + η)TW1 +
T∑
t=1

(1 + η)T−t
[ 2∑
i=1

[(pi− ci)Di,t]

−η[ŵt + vt +
2∑
i=1

ci(x̂i,t +1Tqi,t)]−F (vt)−
2∑
i=1

Ĥi(x̂i,t−Di,t)
]
. (6)

Note that the expected revenue
∑2

i=1[(pi − ci)Di,t] is a constant and W1 is the initial net worth.

Thus, maximizing the expected end-of-horizon net worth E[WT+1] is equivalent to minimizing the

expected total inventory and cash related costs over the whole horizon. Specifically, the original

problem is equivalent to

min
(vt,z1,t,z2,t)∈Ŝt(ŵt);

t=1,...,T

E
[ T∑
t=1

(1 + η)T−t
[
η[ŵt + vt +

2∑
i=1

ci(x̂i,t +1Tqi,t)] +F (vt) +
2∑
i=1

Ĥi(x̂i,t−Di,t)
]]

= (1 + η)T−1 min
(vt,z1,t,z2,t)∈Ŝt(ŵt);

t=1,...,T

E
[ T∑
t=1

αt−1
[
η[ŵt + vt +

2∑
i=1

ci(x̂i,t +1Tqi,t)]

demand forms suggests that the chance of external financing in a period is less than 1.2%. We made this assumption to
facilitate our analysis. Note that the financial friction in our model is the transaction cost, not the external borrowing
cost. Nevertheless, the short-term borrowing model and the current model are related – a special case of our model by
fixing the cash retention policy as vt = (c1z1 + c2z2 − ŵt) reduces to a short-term borrowing model with a borrowing
rate of (Rt + βO) and a return rate of (Rt − βI), where Rt is a compound interest rate in period t based on η. The
proof and simulation study are available upon request from the authors.
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+F (vt) +
2∑
i=1

Ĥi(x̂i,t−Di,t)
]]
, (7)

where α= 1/(1 + η), which can be interpreted as a discount rate.

The problem in (7) can be solved by the dynamic program shown below. Define V̂t(ŵt, x̂t,q1,t,q2,t)

as the minimum expected total costs from period t to T over all feasible decisions, where x̂t =

(x1,t, x2,t). The optimality recursion is

V̂t(ŵt, x̂t,q1,t,q2,t) = min
(vt,z1,t,z2,t)∈Ŝt(ŵt)

{
Ĝt(ŵt, x̂t,q1,t,q2,t, vt) +αE

[
V̂t+1(ŵt+1, x̂t+1,q1,t+1,q2,t+1)

]}
,

(8)

where

Ĝt(ŵt, x̂t,q1,t,q2,t, vt) = η[ŵt + vt +
2∑
i=1

ci(x̂i,t +1Tqi,t)] +F (vt) +
2∑
i=1

E[Ĥi(x̂i,t−Di,t)], (9)

with V̂T+1(·) = 0, and x̂t+1,q1,t+1,q2,t+1, and ŵt+1 following the dynamics in (1)-(3).

The minimum cost formulation provides a clear economic explanation. The first term on the

right-hand side of (9) can be viewed as the opportunity cost of holding cash and inventory which

incurs a potential profit loss from stable capital appreciation (see Allen and Hafer 1984; Luo

and Shang 2015). The second term is the transaction cost for cash transfers between the master

account and the investment account. The third term is the total expected physical inventory

holding and backorder cost at both divisions in period t. Note that the single-period cost function

in (9) does not include the inventory ordering cost cTzt. This is because the total working capital

is not affected by inventory procurement: the increased inventory value is equal to the decreased

cash amount in the master account.

Simplified Model and Echelon Formulation

It is difficult to obtain the optimal policy for the problem in (8) as it is a multi-dimensional

dynamic program subject to curse of dimensionality. One immediate idea is to follow the approach

of Clark and Scarf (1960) who defined echelon terms to reduce the dimension. However, our problem

is more complicated as the cash transition in Equation (3) involves non-linear terms F (vt) and∑2

i=1 Ĥi(x̂i,t−Di,t). To proceed, we propose a simplified model in which these two non-linear terms

are omitted from the cash dynamics. (See Luo and Shang (2018) and Luo and Shang (2015) for the

same treatment on a single-stage and serial model, respectively.)6 Consequently, the cash dynamics

in (3) become

6 We compare the terminal system net worth of the simplified model and that of the exact model under the optimal
policy for two-divisional firms. For the 240 representative instances, the average percentage difference is 0.94%,
suggesting that the simplified model is a good approximation to the exact model. Running the simulation for the
systems with more than two divisions yields a similar result.



13

ŵt+1 = ŵt + vt− cTzt +pTDt. (10)

Notice that F (vt) and
∑2

i=1 Ĥi(x̂i,t−Di,t) are still recorded in the objective function.

In this simplified model, the inventory order in period t does not affect the inventory level and

cash flow until it arrives at the division. It allows us to use the idea of echelon transformation

to simplify the formulation. Define xi,t as the inventory position at division i, and wt as the cash

balance in the master account plus the total inventory value. We refer to wt as the system working

capital.

For period t= 1,2, ..., T + 1, and division i= 1,2, we have

xi,t = x̂i,t +1Tqi,t, and wt = ŵt +
2∑
i=1

ci(x̂i,t +1Tqi,t).

Accordingly, we also define the following echelon variables:

yi,t = xi,t + zi,t, i= 1,2, and rt =wt + vt,

where yi,t represents the order-up-to inventory position at division i, and rt is the corporation’s

working capital after the cash retention decision.

Under these echelon variables, the system dynamics become

xi,t+1 = yi,t−Di,t, i= 1,2, and wt+1 = rt + (p− c)TDt,

and the feasible decision set becomes

St(xt) =
{
rt,yt|yt ≥ xt, rt ≥ cTyt

}
, (11)

where rt ≥ cTyt is the new cash allocation constraint that requires the cash used for inventory

replenishment cannot exceed the cash balance in the master account.

The simplified problem can be reformulated as

Vt(wt,xt) = min
(rt,yt)∈St(xt)

{
Gt(wt, rt,yt) +αE

[
Vt+1(rt + (p− c)TDt,yt−Dt)

]}
, (12)

where

Gt(wt, rt,yt) = ηrt +F (rt−wt) +
2∑
i=1

Hi,t(yi,t), (13)

Hi,t(yi,t) = αLiE[Ĥi(yi,t−
Li∑
j=0

Di,t+j)]. (14)

The corresponding terminal function is VT+1(wT+1,xT+1) = 0. We refer to (12) as the echelon

formulation of the simplified model. Our subsequent analysis will be imposed on the problem (12).
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4. Optimality Analysis

Unlike Luo and Shang (2015), the simplified problem still suffers from the issue of curse of dimen-

sionality as there is a working capital allocation problem for the corporate treasury. This is the

same issue as the inventory allocation problem in the multi-echelon distribution system. Thus,

our objective here is to derive a simple and effective heuristic. To that end, we first explore some

properties for the optimal joint policy in this section. These optimality analysis will motivate us

to develop a novel lower bound on the optimal cost as well as the heuristic policy.

The following lemma shows that the optimal value function is jointly convex. All proofs can be

found in Appendix B.

Lemma 1. The function Vt(wt,xt) is jointly convex in (wt,xt) for all t.

With Lemma 1, we form the following KKT conditions for problem (12) to investigate the optimal

solution.

η+βI +α
∂

∂rt
E[Vt+1(rt + (p− c)TDt,yt−Dt)]−λt = 0, if rt >wt; (15)

η−βO +α
∂

∂rt
E[Vt+1(rt + (p− c)TDt,yt−Dt)]−λt = 0, if rt <wt; (16)

η−βO +α
∂

∂rt
E[Vt+1(rt + (p− c)TDt,yt−Dt)]<λt

< η+βI +α
∂

∂rt
E[Vt+1(rt + (p− c)TDt,yt− Dt )], if rt =wt; (17)

d

dyi,t
Hi,t(yi,t) +α

∂

∂yi,t
E[Vt+1(rt + (p− c)TDt,yt−Dt)]−µi,t + ciλt = 0, for i= 1,2; (18)

λt(rt− cTyt) = 0; (19)

µi,t(yi,t−xi,t) = 0, for i= 1,2. (20)

The first four equations represent the first-order conditions for decision variables rt and yt.

The last two equations are the complementary slackness conditions, where λt and µi,t are the

nonnegative Lagrange multipliers associated with constraints rt ≥ cTyt and yi,t ≥ xi,t, respectively.

We next explore the following bounds on the first-order partial derivatives of the objective functions

Vt(wt,xt), which will be useful in deriving further results.

Lemma 2. For any period t, the first-order partial derivative of the optimal value function Vt to

the working capital wt is bounded by −βI ≤
∂

∂wt
Vt(wt,xt)≤ βO, for all (wt,xt).

Lemma 2 indicates that the marginal optimal cost of the working capital is bounded below by

−βI and above by βO. To see why this marginal optimal cost is bounded above by βO, imagine

that we have achieved the system optimal cost with given (wt,xt). For wt increased by one unit,
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this implies that cash increases by one unit as xt is fixed. With this additional cash, one strategy,

which may not be optimal, is to invest externally, resulting in a transaction cost βO. Thus, the

marginal optimal cost to this additional cash must be smaller than βO, as one can always perform

no worse than simply investing externally. On the other hand, the maximum optimal system cost

that can be saved from this additional cash is that it had been kept in the master account, instead

of transferring from the investment account. Thus, the maximum cost saving is βI .

Let r∗t represent the optimal working capital level after the cash retention decision and y∗i,t be

the optimal order-up-to inventory position at division i. Let (λ∗t ,µ
∗
t ) be the optimal Lagrangian

multipliers. As a consequence of conditions (15)-(20) and Lemma 2, we can obtain the structural

properties of (λ∗t ,µ
∗
t ) summarized in the following theorem.

Theorem 1. For any period t, the optimal working capital r∗t and the optimal values of

Lagrangian multipliers (λ∗t ,µ
∗
t ) are related as follows:

(i) If r∗t >wt, then η+βI −αβI ≤ λ∗t ≤ η+βI +αβO and
2∏
i=1

µ∗i,t = 0.

(ii) If r∗t =wt, then 0≤ λ∗t ≤ η+βI +αβO and
2∏
i=1

µ∗i,t ≥ 0.

(iii) If r∗t <wt, then 0≤ λ∗t ≤ η−βO +αβO and
2∏
i=1

µ∗i,t ≥ 0.

Theorem 1 shows three possible optimal solutions that depend on the system working capital

level. Part (i) describes a scenario in which cash is not sufficient and additional cash is transferred

from the investment account to the master account for inventory replenishment. From Lemma 2,

it is clear that λ∗t ≥ η+ βI −αβI > 0. This implies that the working capital constraint is binding,

i.e., (r∗t = c1y
∗
1,t + c2y

∗
2,t). In other words, if cash is transferred into the master account, all of the

transferred cash has to be used in purchasing inventory, making
2∏
i=1

µ∗i,t = 0 (at least one division

places an order). Note that λ∗t is the shadow price, which means how much cost can be reduced

if the system has one unit of “free” cash to order. In such case, the system can avoid the cash

holding cost η, the transaction cost βI , and the potential cost of disposing it for investment in the

next period, i.e., αβO. This explains the right-hand side of the bound for λ∗t . The left-hand side

can be explained similarly: (βI −αβI) represents the actual transferring cost reduction if the cash

is transferred this period instead of the following period.

Part (ii) describes a scenario in which the optimal system working capital level after the cash

retention decision is the same as the initial working capital level in period t. This implies that no

cash is transferred. In such case, both divisions may not necessarily order in period t so
2∏
i=1

µ∗i,t ≥ 0.

The right-hand size of the bound for λ∗t has the same economic meaning as that of Part (i). As
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for the left-hand side, if the system has a right amount of working capital, it is possible that the

additional free cash does not bring any benefit so the left-hand side bound is zero. Lastly, Part (iii)

describes a scenario in which there is sufficient cash, and the excess cash is transferred from the

master account to the outside investment account. In this case, similar to Part (ii), both divisions

may not necessarily order in period t. As for the right-hand side of the bound for λ∗t , consider the

cost of keeping one additional unit of cash. The system incurs one unit of the cash holding cost

but transfers one unit less of cash to the investment account. In addition, this unit potentially has

to be disposed in the following period. Thus, the net cost of this additional unit is (η−βO +αβO).

In other words, if the firm has one free unit of cash, the net benefit would be the net cost shown

above.

In summary, Theorem 1 suggests that the optimal cash retention policy is a two-threshold policy.

If the working capital is too low, cash should be transferred into the master account up to a lower-

threshold level. In this case, all of the transferred cash should be used for inventory ordering. The

benefit of transferring cash in this case is to avoid a significant backorder cost (at the expense

of incurring the transaction cost βI). On the other hand, if the working capital is too high, cash

should be disposed to the external investment account until an upper-threshold level. The benefit

of transferring cash externally is to avoid the cash holding cost (at the expense of the transaction

cost βO). These properties are useful to develop our heuristic in the subsequent section.

While it is difficult to obtain the optimal joint policy, we are able to characterize the exact one

for the system with i.i.d. demands. Consider the case in which the divisions independently manage

the inventory and cash flows and the cash generated from sales is always sufficient for inventory

replenishment (the divisions therefore transfer all excess cash to external investments). As such,

division i faces the following dynamic program:

Vi,t(xt) = min
yt≥xt

{
(η−βO +αβO)ciyt +Hi,t(yt) +αE[Vi,t+1(yt−Di,t)]

}
, (21)

where Vi,T+1(xT+1) = 0.

The unit cost (η− βO + αβO) reflects the opportunity cost of inventory replenishment. On the

one hand, ordering one more unit of inventory incurs a potential profit loss from stable capital

appreciation (i.e., η). On the other hand, as the division transfers all excess cash to external

investments, ordering one more unit of inventory reduces the cash disposal cost in the current

period (i.e., −βO). However, this additional inventory unit will be sold and bring in additional cash

in the next period, it will make the division dispose more cash from the master account in the next

period (i.e., αβO).
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In the stationary setting, it is well known that the optimal policy for problem (21) is a myopic

base-stock policy with reorder points Si defined by

Si = arg min

{
(η−βO +αβO)ciyt +Hi,t(yt)

}
.

The following proposition demonstrates the optimal inventory and cash policy in the stationary

setting under some mild conditions.

Proposition 1. For the system with i.i.d. demands, if the initial working capital satisfies w1 ≥

(c1S1+c2S2) and the terminal function is VT+1(wT+1,xT+1) = βOwT+1, the optimal inventory policy

is a base-stock policy with the reorder point Si and the firm transfers excess cash to the investment

account after inventory payment.

Whenever a customer orders, the corporation will receive sufficient funds for the inventory replen-

ishment in the following period because pi > ci. Thus, the cash allocation is no longer a concern as

the corporation always has sufficient cash to fulfill the inventory order.

5. Lower Bound

As the optimal policy is difficult to characterize, we aim to propose a simple and effective heuristic.

This section develops a tight lower bound to the optimal cost in order to evaluate the effectiveness

of a heuristic policy. It turns out that this lower bound will lead to an effective heuristic presented

in §6.

An innovative idea of constructing the lower bound is to introduce a linear function at(rt−cTyt),

where (rt−cTyt) is the cash amount in the master account after inventory replenishment, and at is

nonnegative and can be considered as an incentive for the corporate treasury to hold one more unit

of cash in the master account. For this reason, we shall refer to at as the cash-holding multiplier.

By incorporating this additional term to our problem (12), we can construct an auxiliary system

as follows:

V t(wt,xt|at) = min
rt≥cT yt
yt≥xt

{
Gt(wt, rt,yt|at) +αE

[
V t+1(rt + (p− c)TDt,yt−Dt|at+1)

]}
, (22)

where

Gt(wt, rt,yt|at) = ηrt +F (rt−wt) +
2∑
i=1

Hi,t(yi,t)

savings due to holding cash︷ ︸︸ ︷
−at(rt− cTyt) .

Here, at is a (T − t+ 1)-dimensional vector (at, at+1, ..., aT ). Clearly, compared with the original

system, the auxiliary system has exactly the same cost function except the additional savings term.
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Given a nonnegative at, the problem in (22) is clearly a lower bound on the optimal one, i.e.,

V t(wt,xt|at) ≤ Vt(wt,xt). Moreover, the original system is a special case of the auxiliary system

with at = 0.

We next derive a lower bound on the optimal cost of the auxiliary system. The derivation is

based on Clark and Scarf (1960) and illustrated in Chen and Zheng (1994). We generalize it to

our model. Imagine that each inventory unit at the division i is composed of a cash-equivalent

component 0 and a division-specific component i. The cash-equivalent component 0 is distributed

through the corporate treasury to each division. The component i is replenished directly from

division i’s supplier. For a given at, let J i,t(yt|at) denote total cost of division i in period t when its

inventory position after ordering is yt and the optimal inventory decisions are employed for period

t+ 1, ..., T , i.e.,

J i,t(yt|at) =Hi,t(yt) + atciyt +αE[V i,t+1(yt−Di,t|at+1)]. (23)

The function J i,t(yt|at) is convex in yt. Let

Si,t(at) = arg min
yt∈R

J i,t(yt|at). (24)

The function J i,t(yt|at) can be separated into two parts. The first part, Γi,t(yt|at) defined in (26),

is the cost resulted from an insufficient amount of cash-equivalent component 0 (so that division

i cannot order up to the desired level Si,t(at)). The second part is the remaining of J i,t(yt|at).

Now, we assign Γi,t(yt|at) to the corporate treasury, as it is the cost caused by insufficient cash.

Let the optimal cost for the corporate treasury in period t under such a cost allocation scheme be

V H,t(·|at). These cost functions are shown below: for i= 1,2,

V H,t(wt|at) = min
rt≥cT yt

{
(η− at)rt +F (rt−wt) +

2∑
i=1

Γi,t(yi,t|at)

+αE[V H,t+1(rt + (p− c)TDt|at+1)]
}
, (25)

V i,t(xi,t|at) = min
yt≥xi,t

{
Hi,t(yt) + atciyt−Γi,t(yt|at) +αE[V i,t+1(yt−Di,t|at+1)]

}
, (26)

where

Γi,t(yt|at) =

J i,t(yt|at)−J i,t(Si,t(at)|at), if yt <Si,t(at);

0, otherwise.
(27)

With this cost allocation scheme, we have decoupled the total optimal cost in period t into three

separate ones; V i,t(·|at) is the optimal cost for division i whereas V H,t(·|at) is the optimal cost

for the corporate treasury. As the three subsystems do not need to be coordinated due to the

decoupling, the resulting sum of the optimal costs is a lower bound to that of the auxiliary system,

which, in turn, a lower bound to that of the original system. Theorem 2 summarizes the result.
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Theorem 2. For all t and (wt,xt), Vt(wt,xt)≥ V t(wt,xt|at)≥ V H,t(wt|at) +
∑2

i=1 V i,t(xi,t|at).

It is worth noting that when at = 0, the term at(rt − cTyt) becomes zero, and the above cost

decomposition scheme is degenerated to that of Chen and Zheng’s induced-penalty bound. To

obtained an improved lower bound than Chen and Zheng’s induced-penalty bound, we can search

for a1 such that the sum of the optimal costs of three subsystems is maximized:

max
a1

{
V H,1(w1|a1) +

2∑
i=1

V i,1(xi,1|a1)

}
. (28)

We first explain how to obtain the optimal cost for each subsystem with fixed a1. V i,1(xi,1|a1) is

obtained by solving a single-stage inventory problem; V H,1(w1|a1) is obtained by using an algorithm

similar to the one solving the classic distribution system under the so-called balance assumption

(see Clark and Scarf 1960, Federgruen and Zipkin 1984). Let ut(at) and lt(at) denote the thresholds

of optimal working capital levels, where

ut(at) =sup
{
rt :

dJH,t(rt|at)
drt

≤ βO
}
, (29)

lt(at) =sup
{
rt :

dJH,t(rt|at)
drt

≤−βI
}
, and (30)

JH,t(rt|at) =(η− at)rt + min
cT yt≤rt

2∑
i=1

Γi,t(yi,t|at) +αE[V H,t+1(rt + (p− c)TDt|at+1)]. (31)

We shall use these two thresholds to control the cash flow. Theorem 3 summarizes the optimal

policy for each subsystem with fixed at.

Theorem 3.

(i) The optimal inventory policy for division i is a base-stock policy with the base-stock level

Si,t(at), which is nonincreasing in the value of aτ for all time periods τ ≥ t.

(ii) The cash retention policy for the corporate treasury is to maintain the cash-equivalent com-

ponent level between lt(at) and ut(at).

We now turn to solving a1 in (28). To this end, we propose an idea of identifying the search region

for a1 by connecting our lower bound to the Lagrangian relaxation of the simplified model. Denote

by λt = (λt, λt+1, ..., λT ) the Lagrange multipliers associated with the cash allocation constraints

over periods t to T . The Lagrange relaxation of the simplified problem is expressed as

V L
t (wt,xt|λt) = min

rt∈R
yt≥xt

{
ηrt +F (rt−wt) +

2∑
i=1

Hi,t(yi,t)−λt(rt− cTyt)
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+αE[V L
t+1(rt + (p− c)TDt,yt−Dt|λt+1)]

}
(32)

with zero terminal value. Note that the difference between the Lagrangian relaxation and the

auxiliary system in (22) is the constraint set: Unlike the auxiliary system, we remove the cash

allocation constraint rt ≥ cTyt from constraint set in Lagrangian relaxation. It is easy to show

that the optimal cost of the Lagrangian-relaxation problem is equivalent to the total costs of three

subsystems. More specifically, the corporate treasury subsystem

V L
H,t(wt|λt) =min

rt∈R

{
(η−λt)rt +F (rt−wt) +αE[V L

H,t+1(rt + (p− c)TDt|λt+1)]
}
, (33)

and division i’s cost V L
i,t(xi,t|λt) is the same as V i,t(xi,t|at) in (26) given λt = at.

Compared with the treasury subsystem in our lower bound in (25), the Lagrangian treasury cost

defined in (33) has no cash constraint and the induced penalty cost, which suggests that when

at =λt, our lower bound is an upper bound to the Lagrangian-relaxation problem. With this result,

we can prove the following theorem. Let λ∗t be the dual optimal multipliers of the Lagrangian-

relaxation problem. Theorem 4 states that when at =λ∗t , our lower bound cost is the optimal cost

of the simplified system.

Theorem 4. For all t and (wt,xt), Vt(wt,xt) = V H,t(wt|λ∗t ) +
∑2

i=1 V i,t(xi,t|λ∗t ).

Theorem 4 motivates us to use the range of Lagrangian multipliers found in Theorem 1 to search

for the best at. To simplify the calculation, for our lower bound, we set a1 = (a1, a1, ..., a1) for all

T and search over [0, η+βI +αβO] to find the best a1. (The lower bound cost can be improved at

the expense of computational efforts.) We observe an interesting result: when the system requires

more cash holding, a1 tends to be larger. To explain this observation, note that the lower bound is

constructed under the balance assumption. This assumption applied to our model postulates that

when the division i cannot order the inventory up to the target level Si,t(at) due to cash shortage,

the other division can transfer excess inventory to the division i instantaneously. Thus, when we

maximize the lower bound over a1, we in effect aim to lower the effect of the balance assumption,

or, equivalently, increasing the cash holding at the corporate treasury.

We use a numerical example to illustrate this result. Figure 3 illustrates the optimal cash-holding

multiplier a1 with respect to the selling price pi under different demand patterns.7 As shown, a1

is decreasing in p1 for all demand patterns. When p1 is larger, the firm can gain more profit from

7 We fix parameters T = 10, N = 2, η = 0.15, βI = 1.0, βO = 0.01, hi = 0.25, ci = 1, and the initial states
(w1, x1,1, x2,1) = (28,7,7).
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Figure 3 The optimal a1 with respect to the selling price pi under different demand forms.

product sales. Thus, the division is likely to order up to the desired level through sales and does

not need to hold excess cash in the master account, making the cash-holding multiplier a1 smaller.

Notice that under the i.i.d. demand case, a1 is close to zero for all t and instances. This suggests

that Chen and Zheng’s induced-penalty bound performs well for the i.i.d. demand case. However,

when the demands are non-stationary, the choice of the cash-holding multipliers a1 becomes an

important factor that affects the performance of the lower bound. In particular, we find that a1

tends to be positive when the demands are increasing.

6. Heuristic

Theorem 3 suggests that the optimal policy for the lower bound system has a simple structure.

The firm maintains the system working capital between lt(at) and ut(at). If the working capital is

lower than the lower threshold, cash is retrieved up to lt(at); if the working capital is higher than

the upper threshold, cash is disposed down to ut(at). This two-threshold structure is consistent

with the optimal cash retention policy in Theorem 1. For the inventory policy, each division simply

implements a base-stock policy.

We propose the aforementioned optimal policy of the lower bound system as our heuristic. We

need to refine the resulting policy for some rare situations during implementation. First, the cash

upper threshold ut(at) may be lower than the initial inventory value cTxt. As inventory disposal

is not allowed, adjusting the working capital down to ut(at) is not feasible. In our heuristic, if the

situation occurs, we just do nothing and keep r∗t = cTxt. Second, it is possible that the division

cannot order up to Si,t(at) due to the cash limitation in the master account. In such case, the

division just orders up to the level that minimizes the lower-bound cost determined by the cash

allocation constraint.
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We now discuss how to choose at in our heuristic. We suggest two methods. For the static policy,

the vector a1 is predetermined at the beginning of the first period and stays unchanged over the

entire horizon. This is the same method as we use for the lower bound value defined in (28). For

the dynamic heuristic policy, we update the subvector at at the beginning of each period t based on

real-time system states. Specifically, in each period t, the corporation solves the following problem:

arg max
0≤at≤η+βI+αβO

{
V H,t(wt|at) +

2∑
i=1

V i,t(xi,t|at)
}
, (34)

where at = (at, at, ..., at).

After the selection of at, we can generate the corresponding inventory and cash control thresholds

and then implement the policy stated by Theorem 3. Clearly, these thresholds depend on the

real-time system states (wt,xt).

7. Numerical Study

In this section, we present a set of comprehensive numerical experiments. The goal of this study

is threefold. First, we compare our lower bound with the induced-penalty bound developed by

Chen and Zheng (1994) for our cash pooling system. (We also compare these two lower bounds for

the classic one-warehouse-multi-retailer system in Appendix A). Second, we test the effectiveness

of the static and dynamic heuristic policies in §7.2. Third, we reveal insights by quantifying the

value of pooling. Our model allows us to study the value of cash pooling and of a fully integrated

system in which both cash and inventory are pooled. We shall explain these systems in §7.3. We

also investigate how the demand correlation between the divisions affects these values.

We use the following system primitives throughout our numerical study. We set the planning

horizon T = 10 and the number of divisions N ∈ {2,4,8}. The following are common parameters

between divisions: the replenishment lead time Li = 1, the transaction cost βO = 0.01, the physical

holding cost hi = 0.25, and the ordering cost ci = 1. We change the other six system parameters as

follows: βI ∈ {0.2,0.4,0.6}, η ∈ {0.15,0.2,0.3}, bi ∈ {1,2,3.25}, and pi ∈ {1.4,1.7,2}. The demands

between divisions are independent, and the demand at division i in period t follows Poisson dis-

tribution with mean µi,t. For each division, we test three demand forms: stationary, increasing

and seasonal forms. We set µi,t = 5 for the stationary demand, µi,t = 5× 1.2t−1 for the increasing

demand, and µi = (5,7,10,7,5,3,1,3,5,7,10) for the seasonal demand. Finally, we test a total of

nine initial system states (w1,x1) shown in Table 1. The total number of instances is 2187.
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7.1. Comparison of Lower Bounds

As stated, our lower bound is exactly the optimal cost if the cash-holding multipliers a1 are equal

to the optimal Lagrangian multipliers λ∗t . However, obtaining λ∗t is computationally infeasible.

Following the logic of the static heuristic, we calculate a1 according to (28) and report the resulting

lower bound cost in our study.

We define the percentage improvement of our lower bound over the induced-penalty bound as

C −CIP

CIP

× 100%,

where C and CIP represent our lower bound and the induced-penalty bound, respectively.

N
(w1, xi,1, xj,1) Stationary Seasonal Increasing

i= 1, ...,N/2; j =N/2+1, ...,N Avg. (Max., Std.) % Avg. (Max., Std.) % Avg. (Max., Std.) %

2

(14, 7, 7) 0.00 (0.00 , 0.00) 1.08 (2.46 , 0.50) 1.25 (2.52 , 0.53)

(14, 4, 10) 0.00 (0.00 , 0.00) 1.77 (2.54 , 0.42) 2.09 (3.60 , 0.61)

(14, 1, 13) 0.00 (0.01 , 0.00) 2.69 (4.31 , 0.70) 3.21 (5.43 , 0.81)

4

(28, 7, 7) 0.00 (0.00 , 0.00) 1.24 (2.51 , 0.21) 1.35 (2.69 , 0.36)

(28, 4, 10) 0.00 (0.01 , 0.00) 1.98 (3.19 , 0.61) 2.20 (3.91 , 0.80)

(28, 1, 13) 0.00 (0.03 , 0.00) 3.06 (6.54 , 0.64) 3.67 (6.76 , 0.95)

8

(56, 7, 7) 0.00 (0.00 , 0.00) 1.30 (3.27 , 0.32) 1.51 (3.23 , 0.40)

(56, 4, 10) 0.00 (0.02 , 0.00) 2.30 (4.14 , 0.70) 2.62 (5.80 , 0.84)

(56, 1, 13) 0.01 (0.05 , 0.01) 3.71 (6.97 , 0.82) 4.42 (7.91 , 1.01)

Table 1 The performance improvement of the lower bound against the induced-penalty bound.

Table 1 summarizes the improvement of our lower bound over the induced-penalty bound. There

are three observations. First, the improvement is sensitive to the demand type. For the systems with

stationary demand, the improvement of our lower bound is marginal. To explain this observation,

recall that the two lower bounds coincide when the incentive factor a1 = 0. Figure 3 illustrates

that the optimal a1 of problem (28) is close to zero for the stationary systems. It is consistent

with Proposition 1 which states that under stationary demands, the cash received in a period is

sufficient to pay the ordered inventory so a1 is close to zero. On the contrary, the improvement

is significant for the non-stationary demand cases. For example, for the systems with N = 8, the

average improvement achieves 4.42% with a maximum of 7.91% for the increasing demand when

the initial states are (56,1,13). Figure 3 demonstrates that the optimal value of a1 appears to be
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much larger than zero under non-stationary demands. Second, the improvement becomes rather

significant when the initial inventory levels between the divisions are imbalanced. For example, for

the systems with N = 2 and increasing demand, the average improvement is about 1.25% when the

initial state is (14,7,7) (balanced inventory between divisions), whereas the average improvement

increases to 3.21% for the initial state (14,1,13) (imbalanced inventory between divisions). This

observation confirms that reserving more cash in the master account will help coordinate the

inventory imbalance between divisions. Third, the improvement becomes larger as the number

of divisions increases. This is because when the number of divisions increases, there is a higher

probability that the inventory imbalance between the divisions will occur.

N
(w1, xi,1, xj,1) Stationary Seasonal Increasing

i= 1, ...,N/2; j =N/2+1, ...,N Avg. (Max., Std.) % Avg. (Max., Std.) % Avg. (Max., Std.) %

2

(14, 7, 7) 0.07 (0.15 , 0.02) 0.79 (1.56 , 0.25) 1.60 (2.71 , 0.53)

(14, 4, 10) 0.12 (0.21 , 0.06) 1.59 (2.36 , 0.52) 2.40 (4.01 , 0.51)

(14, 1, 13) 0.16 (0.32 , 0.04) 2.60 (4.55 , 0.76) 2.93 (5.71 , 0.81)

4

(14, 7, 7) 0.09 (0.19 , 0.02) 1.36 (2.73 , 0.43) 1.82 (3.30 , 0.43)

(14, 4, 10) 0.14 (0.31 , 0.09) 2.32 (4.21 , 0.62) 2.83 (5.61 , 0.90)

(14, 1, 13) 0.21 (0.63 , 0.16) 3.48 (6.45 , 1.12) 3.73 (6.81 , 1.30)

8

(14, 7, 7) 0.15 (0.31 , 0.10) 1.72 (3.11 , 0.70) 1.82 (3.45 , 0.71)

(14, 4, 10) 0.27 (0.51 , 0.12) 3.24 (6.20 , 1.30) 3.69 (7.82 , 1.51)

(14, 1, 13) 0.33 (0.72 , 0.20) 4.57 (7.70 , 1.23) 4.86 (8.87 , 1.70)

Table 2 The performance of the static policy.

7.2. Heuristic Performance

We test effectiveness of the static and dynamic heuristics by comparing them with our lower bound.

The effectiveness of the heuristic is defined as

C −C
C

× 100%,

where C is the system-wide costs under a certain heuristic and C is our lower bound.

We test the parameter combinations in §7.1 with a total 37 = 2187 instances. For each instance,

we run a simulation of 1000 iterations to calculate the expected heuristic cost. Tables 2 and 3

present the overall performance of the static heuristic and the dynamic heuristic, respectively.

Both heuristic policies perform surprisingly well for the stationary systems (the maximum gap is
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below 0.7%). For the non-stationary systems, it is conceivable that the heuristics would perform

less effectively, and the dynamic heuristic should outperform the static one. The result confirms

this conjecture: The average percentage gap is 2.13% for the seasonal demand cases, and 2.85%

for the increasing demand cases. Interestingly, the dynamic policy does not significantly improve

the performance over the static policy, which suggests that an effective initial cash-holding param-

eter is crucial. Note that the heuristic is compared with the lower bound cost. Thus, the actual

performance would be better than we reported in the table if compared with the optimal cost.

N
(w1, xi,1, xj,1) Stationary Seasonal Increasing

i= 1, ...,N/2; j =N/2+1, ...,N Avg. (Max., Std.) % Avg. (Max., Std.) % Avg. (Max., Std.) %

2

(14, 7, 7) 0.07 (0.13 , 0.02) 0.42 (1.14 , 0.15) 1.21 (2.10 , 0.23)

(14, 4, 10) 0.10 (0.17 , 0.03) 1.01 (2.14 , 0.27) 1.75 (3.20 , 0.25)

(14, 1, 13) 0.15 (0.26 , 0.05) 1.89 (3.85 , 0.46) 2.02 (4.29 , 0.41)

4

(14, 7, 7) 0.08 (0.15 , 0.04) 0.91 (1.96 , 0.25) 1.15 (2.71 , 0.53)

(14, 4, 10) 0.12 (0.26 , 0.09) 1.78 (3.86 , 0.42) 2.19 (4.01 , 0.52)

(14, 1, 13) 0.16 (0.35 , 0.10) 2.91 (5.85 , 0.61) 3.10 (5.71 , 0.56)

8

(14, 7, 7) 0.10 (0.22 , 0.07) 1.61 (2.96 , 0.40) 1.22 (2.19 , 0.22)

(14, 4, 10) 0.18 (0.32 , 0.08) 2.69 (5.66 , 0.42) 2.90 (6.01 , 0.50)

(14, 1, 13) 0.25 (0.47 , 0.14) 3.81 (6.75 , 0.66) 4.03 (7.71 , 0.82)

Table 3 The performance of the dynamic policy.

7.3. Value of Pooling

Our model allows us to study the benefits of cash pooling and a fully integrated system by com-

paring three systems. For the no-pooling system, each division manages its inventory and cash

independently. The cash-pooling system is our current model. The fully integrated system assumes

that, in addition to cash pooling, the firm can further pool the division’s inventory in a single

location that fulfills all demands. The optimal joint cash and inventory policy for a single-location

system has been established in Luo and Shang (2015), which can be applied to the no-pooling

system and the fully integrated system. Clearly, the fully integrated system performs the best as it

consolidates both inventory and cash flows, the cash-pooling system the second, and the no-pooling

system the worst. By comparing the cost difference between the cash-pooling system and the fully

integrated system, one can justify whether inventory pooling should be implemented as it often

requires a significant amount of capital investment in infrastructure.
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To quantify the benefits of cash pooling and full integration, we define the following percentages

of cost reduction between the above three inventory models.

Value of Cash Pooling (VC) =
CN −C
CN

× 100%,

Value of Full Integration (VF) =
CN −CF

CN
× 100%.

where CN represents the optimal cost of the no-pooling system, CF the optimal cost of the fully

integrated system, and C is the total cost under the static heuristic. We define the value of cash

pooling (VC) as the percentage of cost reduction from the no-pooling system to the cash pooling

system. The value of full integration (VF) is defined similarly. The incremental value of inventory

pooling under cash pooling is defined as VI = (VF - VC).

We consider a subset of numerical examples introduced in the beginning of §7. More specifically,

we consider cases with N = 2 and the initial states (w1, x1, x2) = (14,7,7). For the no-pooling sys-

tem, we consider identical divisions with the same system parameters (i.e., both divisions have the

same η, βI , βO, etc.) and the same three demand forms specified in §7.1. It is known that the value

of pooling is affected by the demand correlation so we consider three demand correlation coeffi-

cients between the two divisions as ρ= {−0.5,0,0.5} in each period. The total number of instances

is 729. Table 4 summarizes VF, VC, and VI under different demand forms and correlations.

Table 4 The average value (%) of fully integration, cash pooling and inventory pooling with two divisions.

Demand type ρ

bi

1 2 3.25

VF VC VI VF VC VI VF VC VI

Stationary
−0.5 4.73 0.72 4.01 7.61 1.11 6.50 10.65 1.77 8.88

0 1.46 0.53 0.93 2.62 0.69 1.93 3.75 1.14 2.61

0.5 0.34 0.27 0.07 0.42 0.36 0.06 1.10 0.90 0.20

Seasonal
−0.5 8.56 4.40 4.16 15.18 7.73 7.45 25.08 13.88 11.20

0 4.39 2.56 1.83 7.90 5.89 2.01 13.20 10.31 2.89

0.5 2.26 1.30 0.96 5.25 4.01 1.24 9.00 7.10 1.90

Increasing
−0.5 13.96 7.71 6.25 24.65 13.19 11.46 37.05 19.45 17.60

0 7.38 4.60 2.78 11.76 8.04 3.72 16.28 11.88 4.40

0.5 3.06 2.01 1.05 5.69 4.09 1.60 9.16 7.17 1.99
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Table 5 Pooling strategies under different demand forms and correlations.

Stationary Increasing
Positive ρ No Change Cash Pooling
Negative ρ Inventory Pooling Full Integration

Our numerical study reveals insights on the pooling strategies for firms. When the demands are

stationary, we find that the value of cash pooling is generally small under different demand forms

and correlations. This is because under the stationary demand, the systems are more likely to have

sufficient cash (see Proposition 1) and hence holding cash in the master account does not add much

value. On the other hand, the value of inventory pooling is significant (minimal, respectively) when

the demands are negatively (positively, respectively) correlated. This result is consistent with that

of Eppen (1979).

The value of cash pooling is more profound under the seasonal and increasing demand forms. It

is interesting to see that the value of cash pooling is significant but the value of inventory pooling is

minimal when the demands are increasing and positively correlated. For example, for the increasing

demand instances with b= 3.25 and ρ= 0.5, the percentage of cost reduction due to cash pooling

is 7.17% whereas the cost reduction due to inventory pooling is 1.99%. Finally, the value of cash

pooling and the value of inventory pooling are both significant when the demands are increasing

and negatively correlated. For the same instances with ρ being −0.5, the percentage cost reduction

due to cash pooling is 19.45% whereas the cost reduction due to inventory pooling is 17.60%.

Pooling is always beneficial but it often requires significant investments in infrastructure (e.g.,

information technology systems, additional logistics costs, etc.). Table 5 provides guidance on a

firm’s pooling strategy under different demand forms and correlations based on our study. As shown,

when demands are stationary (i.i.d.) and positively correlated, it may not be necessary to conduct

either inventory pooling or cash pooling as the investment cost may outweigh the benefit due to

pooling. On the other hand, when the demands are increasing and positively correlated, the firm

should consider implementing cash pooling only, as the inventory pooling may bring little value.

Lastly, if the demands are increasing and negatively correlated, the firm can obtain a significant

benefit by full integration.

In the finance literature, it is known that cash pooling can reduce financing and transaction costs.

To quantify the benefit of cash pooling on reducing inventory-related costs, we divide the total

system cost into two parts: the cash-related cost that includes the cash holding and transaction

costs, and the inventory-related cost that includes the inventory holding and backorder costs.

Specifically, we define
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Demand type

ρ Stationary Seasonal Increasing

−0.5 2.02 0.32 7.20 10.01 11.01 16.51

0 1.34 0.11 4.89 8.01 6.40 11.04

0.5 0.77 0.07 2.96 5.36 3.18 6.51

Table 6 The percentage of cost reduction on the cash-related cost and the inventory-related cost (in solid

rectangle) under cash pooling.

Cash-related Cost Reduction =
CN
cash−Ccash

CN
cash

× 100%,

Inventory-related Cost Reduction =
CN
inv −Cinv

CN
inv

× 100%,

where CN
cash and Ccash are the cash-related costs of no-pooling and cash-pooling systems, respec-

tively, and CN
inv and Cinv are the inventory-related costs of no-pooling and cash-pooling systems,

respectively. For the no-pooling system, we use the optimal cost, whereas for the cash pooling

system, we use the cost under the static heuristic.

Table 6 illustrates the cash pooling effect on the cost reduction of the inventory-related cost and

cash-related cost. It is interesting to observe that the cost reduction on the inventory-related cost

is more significant than that on the cash-related cost when the demands are non-stationary. For

example, under the increasing demand with ρ=−0.5, the inventory-related cost reduction is about

16.51%, while the cash-related cost reduction is 11.01%. This result suggests that cash pooling

reduces not only the cost resulted from transaction costs and financing costs, as suggested in the

finance literature, but also the cost of managing inventory by matching supply with demand more

efficiently. The latter benefit often outweighs the former.

8. Conclusion

This paper studies a joint inventory and cash management problem for a corporation with multiple

divisions. We formulate the problem into a dynamic program and partially characterize the optimal

policy. Because of curse of dimensionality, we develop a novel lower bound which is a generalization

of the two known lower bounds in the literature. We provide two efficient and simple heuristic

policies based on the lower bound functions. We numerically show that the proposed heuristic

policies perform near optimally and also examine how system parameters affect the value of cash

pooling. We conclude that the value of cash pooling is most significant when the demands are

increasing and negatively correlated between the divisions. We also show that cash pooling can
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effectively alleviate inventory shortage and reduce mismatches of demand and supply. Our model

and analysis are comfortably applied to a setting where a cash-constrained retailer replenishes

inventory for multiple products. They can also be applied to the classic multi-echelon distribution

system under a finite-time horizon with non-stationary demands.

There are two possible extensions of the current work. First, our model and the analysis are

based on a centralized control scheme. It is of interest to study a coordination mechanism under

which the decisions are decentralized made by the divisions and the corporate treasury. Second,

we do not consider a warehouse that can store inventory for both divisions. It is interesting to

investigate the benefits of cash pooling and inventory pooling and their relationships (i.e., substitute

or complementary) under such model.
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Online Appendix

Managing Inventory for a Multi-divisional Corporation with Cash Pooling

A. Two-Echelon Distribution Systems
Our lower bound can be extended to the traditional distribution inventory system consisting of one warehouse

(stage 0) and multiple retailers (stage i, i= 1, ...,N). The retailers replenish their stock from the warehouse,

which in turn places orders at an outside supplier with unlimited supply. We define c0 as the unit ordering

cost of the warehouse and set without loss of generality the unit ordering costs of the retailers to be zero.

Inventory replenishment at each echelon takes a constant lead time. We assume the material lead time from

the outside supplier to warehouse is one period and the lead time from warehouse to retailer i is denoted by

Li. In each period, the warehouse first places an order to the outside supplier if necessary and then distributes

the on-hand inventory to the retailers. Left inventory will be carried over to the next period and unsatisfied

demands at retailer i are fully backlogged with a unit backorder cost bi. We denote by h0 and hi the unit

echelon holding costs at the warehouse and retailer i, respectively. The corporation aims to minimize its

total expected costs over T periods.

Let xi,t be the echelon inventory position at stage i in the beginning of period t after receiving shipment

and yi,t be order-up-to echelon inventory position. We define the echelon holding/backorder cost associated

each echelon as follows:

H0,t(y0,t) = αE[h0(y0,t−
N∑
i=1

1∑
j=0

Di,t+j)],

Hi,t(yi,t) = αLiE[hi(yi,t−
Li∑
j=0

Di,t+j) + (bi +h0 +hi)(yi,t−
Li∑
j=0

Di,t+j)
−], for i= 1, ...,N.

Define xt = (x1,t, x2,t), yt = (y1,t, y2,t) and Dt = (D1,t,D2,t). The dynamic program is written as

Vt(x0,t,xt) = min
y0,t≥x0,t≥1T yt

yt≥xt

{
c0(y0,t−x0,t) +H0,t(y0,t) +

N∑
i=1

Hi,t(yi,t) +αE[Vt+1(y0,t−1TDt,yt−Dt)]

}
.

Incorporating the linear savings due to holding inventory at warehouse at(x0,t−cTyt), the auxiliary system

is

V t(x0,t,xt|at) = min
y0,t≥x0,t≥1T yt

yt≥xt

{
c0(y0,t−x0,t) +H0,t(y0,t) +

N∑
i=1

Hi,t(yi,t)− at(x0,t− cTyt)

+αE[V t+1(y0,t−1TDt,yt−Dt|at+1)]

}
.

Decoupling this system by the cost allocation scheme in Chen and Zheng (1994), our lower bound can be

expressed as the sum of following subsystems

V 0,t(x0,t|at) =− (c0 + at)x0,t+

min
y0,t≥x0,t≥cT yt

{
c0y0,t +H0,t(y0,t) +

2∑
i=1

Γi,t(yi,t|at) +αE[V 0,t(y0,t−1TDt|at+1)]
}
,

V i,t(xi,t|at) = min
yt≥xi,t

{
Hi,t(yt) + atciyt−Γi,t(yt|at) +αE[V i,t(yt−Di,t|at+1)]

}
, for i= 1, ...,N.
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The induced-penalty cost is

Γi,t(yt|at) =

{
J i,t(yt|at)− J i,t(Si,t(at)|at), if yt <Si,t(at);

0, otherwise;

where

J i,t(yt|at) =Hi,t(yt) + atciyt +αE[V i,t(yt−Di,t|at+1)],

Si,t(at) = arg min
yt∈R

J i,t(yt|at).

Next we conduct a comprehensive numerical study to test the performance of our lower bound for the

traditional distribution model. We obtain the value of a1 through a numerical search

max
0≤a1≤max{αLi bi}

for i=1,2,...,N

{
V 0,1(x0,1|a1) +

N∑
i=1

V i,1(xi,1|a1)
}
, (A1)

where a1 = (a1, a1, ..., a1). max{αLibi} for i= 1,2, ...,N is an upper bound to the shadow price of inventory,

which is the maximum possible cost reduced when the system has one more unit “free” inventory held at

warehouse. The parameter values are presented in Table A1. We test stationary, seasonal and increasing

poisson demands over time periods: µi,t = 5 for the stationary demand, µi,t = 5× 1.2t−1 for the increasing

demand and set µi = (5,7,10,7,5,3,1,3,5,7,10) for the seasonal demand. To explore the impact of the

initial inventory imbalance on the lower bound performance, we set different initial states (x0,1,x1). There

are totally 35 × 3× 3 = 2187 instances to test. The performance improvement of our lower bound against

Chen and Zheng’s induced-penalty bound in the distribution system is shown in Table A2. Consistent with

observations in the cash pooling system, our lower bound outperforms the induced-penalty bound especially

for non-stationary systems.

Table A1 Parameter values for the two-echelon distribution systems.

T N α c h0 Li hi bi

10 {2,4,8} {0.9,0.95,0.99} {0.2,0.4,0.6} 0.2 1 {0.1,0.2,0.4} {2,3.5,5}



3

Table A2 The overall performance improvement of our lower bound against the induced-penalty bound for

two-echelon distribution systems.

N
(x0, xi,1, xj,1) Stationary Seasonal Increasing

i= 1, ...,N/2; j =N/2+1, ...,N Avg. (Max., Std.) % Avg. (Max., Std.) % Avg. (Max., Std.) %

2

(14, 7, 7) 0.32 (0.55 , 0.16) 0.79 (1.49 , 0.34) 1.36 (3.03 , 0.29)

(14, 4, 10) 0.72 (1.47 , 0.23) 1.40 (2.69 , 0.40) 2.01 (4.42 , 0.40)

(14, 1, 13) 1.11 (2.21 , 0.30) 2.31 (4.41 , 0.64) 3.29 (6.50 , 0.51)

4

(14, 7, 7) 0.64 (1.30 , 0.20) 1.08 (2.12 , 0.34) 2.31 (4.50 , 0.50)

(14, 4, 10) 1.19 (2.41 , 0.35) 1.83 (3.47 , 0.56) 3.24 (6.70 , 0.60)

(14, 1, 13) 2.09 (4.01 , 0.51) 3.11 (5.90 , 0.60) 4.17 (8.57 , 0.70)

8

(14, 7, 7) 1.51 (3.32 , 0.42) 2.06 (3.81 , 0.50) 3.07 (6.00 , 0.70)

(14, 4, 10) 2.78 (5.71 , 0.50) 3.25 (5.91 , 0.63) 4.03 (7.41 , 0.82)

(14, 1, 13) 4.19 (7.16 , 0.65) 4.77 (8.01 , 0.72) 5.18 (8.49 , 1.01)

B. Proofs
Proof of Lemma 1. We prove the result by induction. As VT+1(wT+1,xT+1) = 0, the result trivially holds

for period T + 1. Now, we assume that the result is true for period t+ 1, i.e., Vt+1(wt+1,xt+1) is jointly

convex in (wt+1,xt+1). We next show that Vt(wt,xt) is also jointly convex in (wt,xt).

As convexity can be preserved by composition with affine functions, Vt+1(rt+(p−c)TDt,yt−Dt) is jointly

convex in (rt,yt). Due to the preservation of convexity under expectation, E[Vt+1(rt+(p−c)TDt,yt−Dt)] is

also jointly convex in (rt,yt). As F (x) = βIx
+ +βOx

− is a convex function, so is F (rt−wt). Consequently, one

can readily prove that the single-period cost function Gt(wt, rt,yt) is joint convex in (wt, rt,yt). Therefore,

the objective function Gt(wt, rt,yt)+E[Vt+1(rt+(p−c)TDt,yt−Dt)] in (12) is jointly convex in (wt, rt,yt).

Note that the constraint set St(xt) is a convex set. By Proposition 2.2.15 of Simchi-Levi et al. (2004),

Vt(wt,xt) is jointly convex in (wt,xt), which completes the induction. �

Proof of Lemma 2. Denote by (r∗t ,y
∗
t ) and (r∗t,∆,y

∗
t,∆) the optimal solutions of problem (12) with

initial states (wt,xt) and (wt + ∆w,xt), respectively. Let Jt(wt, rt,yt) = Gt(wt, rt,yt) + αE[Vt+1(rt + (p−
c)TDt,yt−Dt)]. To derive the upper bound of

∂

∂wt
Vt(wt,xt), we show that

Vt(wt + ∆w,xt)−Vt(wt,xt)
∆w

=
Jt(wt + ∆w,r∗t,∆,y

∗
t,∆)− Jt(wt, r∗t ,y∗t )

∆w

≤ Jt(wt + ∆w,r∗t ,y
∗
t )− Jt(wt, r∗t ,y∗t )

∆w

=
βI(r

∗
t −wt−∆w)+ +βO(r∗t −wt−∆w)−

∆w

− βI(r
∗
t −wt)+ +βO(r∗t −wt)−

∆w
≤ βO,

where the first inequality follows from the fact that (r∗t ,y
∗
t ) is also a feasible solution of problem (12) with

the initial state (wt + ∆w,xt).
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Similarly, we can show that

Vt(wt + ∆w,xt)−Vt(wt,xt)
∆w

=
Jt(wt + ∆w,r∗t,∆,y

∗
t,∆)− Jt(wt, r∗t ,y∗t )

∆w

≥
Jt(wt + ∆w,r∗t,∆,y

∗
t,∆)− Jt(wt, r∗t,∆,y∗t,∆)

∆w

=
βI(r

∗
t −wt−∆w)+ +βO(r∗t −wt−∆w)−

∆w

− βI(r
∗
t −wt)+ +βO(r∗t −wt)−

∆w
≥−βI ,

where the first inequality follows from the fact that (r∗t,∆,y
∗
t,∆) is also a feasible solution of problem (12)

with the initial state (wt,xt).

Therefore, the results hold. �

Proof of Theorem 1. We prove these results based on the KKT conditions (15)-(20) and Lemma 2.

(i) If r∗t >wt, the condition (15), together with Lemma 2, implies that

η+βI −αβI ≤ λ∗t = η+βI +α
∂

∂rt
E[Vt+1(rt + (p− c)TDt,yt−Dt)]≤ η+βI +αβO.

It immediately follows that λ∗t ≥ η+βI−αβI > 0. The condition (19) implies that r∗t = cTy∗t . As the initial

system working capital is larger than the initial inventory value, i.e., wt ≥ cTxt, c
Ty∗t = r∗t >wt ≥ cTxt. That

is, cTy∗t > cTxt which implies that either y1,t >x1,t or y2,t >x2,t. Consequently, it follows from the condition

(20) that either µ∗1,t = 0 or µ∗2,t = 0, i.e.,
2∏
i=1

µ∗i,t = 0. Hence, the result (i) holds.

(ii) If r∗t =wt, the condition (17) and Lemma 2 imply that η− βO −αβI ≤ λ∗t ≤ η+ βI +αβO. The lower

bound is nonpositive due to the assumption that η≤ βO +αβI . However, the Lagrange multipliers should be

nonnegative. As a result, a tighter bound should be 0≤ λ∗t ≤ η + βI + αβO. The result
2∏
i=1

µ∗i,t ≥ 0 trivially

holds, as the dual optimal multipliers µ∗i,t are nonnegative.

(iii) Similarly, if r∗t < wt, it follows from the condition (16) and Lemma 2 that η − βO − αβI ≤ λ∗t ≤
η−βO +αβO. As the Lagrange multiplier should be nonnegative, the lower bound can be refined to be zero.

�

Proof of Proposition 1. We first construct a new system by replacing the cash transaction cost βI(rt−
wt)

+ +βO(rt−wt)− in the original problem in (12) with βO(wt− rt):

Ṽt(wt,xt) = min
(rt,yt)∈St(xt)

{
G̃t(wt, rt,yt) +αE

[
Ṽt+1(rt + (p− c)TDt,yt−Dt)

]}
, (A2)

where St(xt) is defined in (11) and

G̃t(wt, rt,yt) = ηrt +βO(wt− rt) +

2∑
i=1

Hi,t(yi,t), (A3)

where Hi,t(yi,t) are defined by (14).

Because βI(rt −wt)+ + βO(rt −wt)− ≥ βO(rt −wt)− ≥ βO(wt − rt), this system is a lower bound to the

original system. Specifically, Ṽt(wt,xt)≤ Vt(wt,xt) for any (wt,xt). We next analyze the optimal cash reten-

tion decision of this system. One can easily prove that Ṽt(wt,xt) is increasing in wt and the marginal cost

of cash is bounded above by βO, i.e., 0≤ ∂Ṽt(wt,xt)

∂wt
≤ βO. Define J̃t(wt, rt,yt) = G̃t(wt, rt,yt) +αE

[
Ṽt+1(rt +

(p− c)TDt,yt−Dt)
]
. Then, we have

∂J̃t(wt, rt,yt)

∂rt
= η−βO +

∂αE
[
Ṽt+1(rt + (p− c)TDt,yt−Dt)

]
∂rt
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≥ η−βO

> 0,

where the last inequality follows from the assumption η > βO.

It states that the objective function in (A2) is increasing in rt. Therefore, the optimal cash retention

decision for the new system should satisfy the equation rt = cTyt. Then we can further simplify the problem

in (A2) to

Ṽt(wt,xt) = min
yt≥xt

{
G̃t(wt,yt) +αE

[
Ṽt+1(cTyt + (p− c)TDt,yt−Dt)

]}
, (A4)

where

G̃t(wt,yt) = ηcTyt +βO(wt− cTyt) +

2∑
i=1

Hi,t(yi,t). (A5)

We next show that the problem in (A4) is decomposable. Define the following dynamic program

Ṽi,t(xt) = min
yt≥xt

{
(η−βO +αβO)ciyt +Hi,t(yt) +αE[Ṽi,t+1(yt−Di,t)]

}
, (A6)

where Ṽi,T+1(xT+1) = 0. We now prove by induction that Ṽt(wt,xt) can be expressed as Ṽt(wt,xt) = βOwt +∑2
i=1 Ṽi,t(xi,t). The result trivially holds for period T + 1, as ṼT+1(wT+1,xT+1) = βOwT+1. Assume that it

is true for period t+ 1, i.e., Ṽt+1(wt+1,xt+1) = βOwt+1 +
∑2

i=1 Ṽi,t+1(xi,t+1). Then, the problem in (A4) can

be rewritten as

Ṽt(wt,xt) = min
yt≥xt

{
ηcTyt +βO(wt− cTyt) +

2∑
i=1

Hi,t(yi,t)

+αβO(cTyt + (p− c)TE[Dt]) +

2∑
i=1

E
[
Ṽi,t+1(yi,t−Di,t)

]}
,

=βOwt +

2∑
i=1

Ṽi,t(xi,t), (A7)

which completes the induction.

It is well known that in the stationary setting, the optimal inventory policy for problem (A6) is a myopic

base-stock policy with reorder points Si defined by

Si = arg min

{
(η−βO +αβO)ciyt +Hi,t(yt)

}
.

Therefore, the optimal policy of the problem in (A4) is as follows: the inventory policy is a base-stock

policy with base-stock level Si, while the corporate treasury transfers all excess cash to the investment

account after inventory payment.

Finally, we implement the optimal policy of the problem in (A4) to the original problem and show that it

can achieve the same expected costs. As a result, the optimal policy of the problem in (A4) is also optimal

for the original problem, as the new problem is a lower bound to the original system.

Note that the original and new systems share the same inventory-related costs as they charge identical

inventory costs and adopt the same inventory policy. The cost difference arises from the cash-related costs.

The problem (A4) charges βO(wt − rt), whereas the original problem charges βI(rt −wt)+ + βO(rt −wt)−.

However, the two cost schemes are equivalent if we can show wt ≥ rt for every period t, namely, the initial
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working capital of each period is sufficient for the inventory replenishment. We prove it by the sample path

approach. Recall that rt = c1S1 + c2S2. By the assumption that w1 ≥ c1S1 + c2S2, the result is true for

period 1. Consider a particular demand path {(d1,1, d2,1), (d1,2, d2,2), ..., (d1,T , d2,T ))}. For period 2, the initial

working capital is w2 = cTyt + (p− c)Tdt = c1S1 + c2S2 + (p− c)Tdt ≥ c1S1 + c2S2 = rt. Similarly, one can

show that the result still holds for other subsequent periods. �

Proof of Theorem 2. We first prove Vt(wt,xt) ≥ V t(wt,xt|at) by induction. As VT+1(wT+1,xT+1) =

V T+1(wT+1,xT+1|aT+1) = 0, the result trivially holds for period T + 1. Assume that the result is true

for period t + 1, i.e., Vt+1(wt+1,xt+1) ≥ V t+1(wt+1,xt+1|at+1). As at is nonnegative, Gt(wt, rt,yt|at) ≤
Gt(wt, rt,yt). Hence, the objective function in (22) is smaller than that in (12). It immediately follows that

Vt(wt,xt) ≥ V t(wt,xt|at), as the two optimization problems have the same constraints. The proof of the

result V t(wt,xt|at) ≥ V H,t(wt|at) +
∑2

i=1 V i,t(xi,t|at) corresponds to the cost allocation scheme stated by

Chen and Zheng (1994) and is similar with the proof in Appendix B of their paper. Hence, we omit the proof

here. �

Proof of Theorem 3. (i) Division i faces the following optimization problem

V i,t(xi,t|at) = min
yt≥xi,t

{
J i,t(yt|at)−Γi,t(yt|at)

}
,

where J i,t(yt|at) is defined in (23). Note that the cost objective function is{
J i,t(Si,t(at)|at), if yi,t ≤ Si,t(at);

J i,t(yt|at), otherwise,

where Si,t(at) is defined in (24). It can be readily proven by induction that the problem is convex and a

base-stock policy with the base-stock level Si,t(at) is optimal.

We next prove the monotonicity of the base-stock level Si,t(at) with respect to aτ for any τ ≥ t. By the

definition of Γi,t(yt|at) in (27), V i,t(xi,t|at) can be rewritten as

V i,t(xi,t|at) = min
yt≥xi,t

{
J i,t(yt|at)

}
.

So we just need to prove J i,t(yt|at) is supermodular in (yt, aτ ) for all τ ≥ t. The result trivially holds

for period T + 1. Assume that V i,t+1(xi,t+1|at+1) is supermodular in (xi,t+1, aτ ) for τ ≥ t + 1. Because

supermodularity can be preserved under addition and positive scalar multiplication, it follows that the

expectation αE[V i,t+1(yt−Di,t|at+1)] is supermodular in (yt, aτ ) for τ ≥ t+1. One also can easily verify that

the term Hi,t(yt) + atciyt is supermodular in (yt, at). Therefore, J i,t(yt|at) is supermodular in (yt, aτ ) for

τ ≥ t. To complete the induction, we next prove that V i,t(xi,t|at) is supermodular in (xi,t, aτ ) for all τ ≥ t.
We can derive the partial derivative of V i,t(xi,t|at) with respect to xi,t

∂V i,t(xi,t|at)
∂xi,t

=


0, if xi,t ≤ Si,t(at);

∂J i,t(xi,t|at)
∂xi,t

, otherwise.
(A8)

To prove the supermodularity, we need to verify that
∂V i,t(xi,t|at)

∂xi,t
is increasing in aτ for τ ≥ t. Given a period

τ ≥ t, let a
′

t = (at, at+1, ..., a
′

τ , ..., aT ) and a
′′

t = (at, at+1, ..., a
′′

τ , ..., aT ) such that 0≤ a′

τ ≤ a
′′

τ . As J i,t(yt|at) is

supermodular in (yt, aτ ), the base-stock level Si,t(at) is decreasing in aτ , i.e., Si,t(a
′

t)≥ Si,t(a
′′

t ). We consider

the following three cases.

Case 1. If xi,t ≤ Si,t(a
′′

t ), then it follows from (A8) that
∂V i,t(xi,t|at)

∂xi,t
|at=a

′
t

=
∂V i,t(xi,t|at)

∂xi,t
|at=a

′′
t

= 0.
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Case 2. If Si,t(a
′′

t )< xi,t ≤ Si,t(a
′

t), then
∂V i,t(xi,t|at)

∂xi,t
|at=a

′
t

= 0 and
∂V i,t(xi,t|at)

∂xi,t
|at=a

′′
t

=
∂Ji,t(xi,t|at)

∂xi,t
|at=a

′′
t

.

The convexity of J i,t(·|at) implies
∂Ji,t(xi,t|at)

∂xi,t
|at=a

′′
t
≥ 0. Therefore

∂V i,t(xi,t|at)

∂xi,t
|at=a

′
t
≤ ∂V i,t(xi,t|at)

∂xi,t
|at=a

′′
t

.

Case 3. If Si,t(a
′

t) < xi,t,
∂V i,t(xi,t|at)

∂xi,t
|at=a

′
t

=
∂Ji,t(xi,t|at)

∂xi,t
|at=a

′
t

and
∂V i,t(xi,t|at)

∂xi,t
|at=a

′′
t

=
∂Ji,t(xi,t|at)

∂xi,t
|at=a

′′
t

.

The supermodularity of J i,t(·|at) implies
∂Ji,t(xi,t|at)

∂xi,t
|at=a

′
t
≤ ∂Ji,t(xi,t|at)

∂xi,t
|at=a

′′
t

. Therefore
∂V i,t(xi,t|at)

∂xi,t
|at=a

′
t
≤

∂V i,t(xi,t|at)

∂xi,t
|at=a

′′
t

.

Therefore,
∂V i,t(xi,t|at)

∂xi,t
is increasing in aτ , and the result holds for any τ ≥ t. Hence V i,t(xi,t|at) is super-

modular in (xi,t, aτ ) for τ ≥ t. The induction completes. As a global minimizer of a supermodular function,

the base-stock level Si,t(at) is nonincreasing in the value of aτ for τ ≥ t given any period t.

(ii) The cash subsystem H solves the following optimization problem

V H,t(wt|at) = min
rt≥cT yt

{
(η− at)rt +F (rt−wt) +

2∑
i=1

Γi,t(yi,t|at) +αE[V H,t+1(rt + (p− c)TDt|at+1)]
}
.

It is easy to verify that this dynamic optimization is a convex problem, and the optimal cash retention policy

is a two-threshold policy with the upper and lower thresholds defined in (29) and (30). We refer the reader

to Luo and Shang (2015) for the detailed proof of the policy structure. �

Proof of Theorem 4. We first show by induction that the Lagrange relaxation problem defined in (32)

is a lower bound to our proposed bound as long as λ1 = a1. The result trivially holds for period T + 1. We

assume it holds in period t+ 1, i.e., V L
t+1(wt+1,xt+1|λt+1) ≤ V H,t+1(wt+1|at+1) +

∑2
i=1 V i,t+1(xi,t+1|at+1)

when λt+1 = at+1. As a result, we have

V L
t (wt,xt|λt) = min

rt∈R
yt≥xt

{
ηrt +F (rt−wt) +

2∑
i=1

Hi,t(yi,t)−λt(rt− cTyt) +αE
[
V L
t+1(rt + (p− c)TDt,yt−Dt|λt+1)

]}
≤ min

rt∈R
yt≥xt

{
ηrt +F (rt−wt) +

2∑
i=1

Hi,t(yi,t)− at(rt− cTyt) +αE
[
V H,t+1(rt + (p− c)TDt|at+1)

+

2∑
i=1

V i,t+1(yi,t−Di,t|at+1)
]}

= min
rt∈R

{
(η− at)rt +F (rt−wt) +αE[V H,t+1(rt + (p− c)TDt|at+1)]

}
+

2∑
i=1

[
min

yi,t≥xi,t

{
Hi,t(yi,t) + atciyi,t +αE[V i,t+1(yi,t−Di,t|at+1)]

}]
,

≤min
rt∈R

{
(η− at)rt +F (rt−wt) +αE[V H,t+1(rt + (p− c)TDt|at+1)] + min

cT yt≤rt

2∑
i=1

Γi,t(yi,t|at)
}

+

2∑
i=1

[
min

yi,t≥xi,t

{
Hi,t(yi,t) + atciyi,t +αE[V i,t+1(yi,t−Di,t|at+1)]

}]
,

=V H,t(wt|at) +

2∑
i=1

[
min

yi,t≥xi,t

{
Hi,t(yi,t) + atciyi,t−Γi,t(yi,t|at) +αE[V i,t+1(yi,t−Di,t|at+1)]

}]
,

=V H,t(wt|at) +

2∑
i=1

V i,t(xi,t|at), (A9)

where the first inequality follows from the induction assumption and the second from the non-negativity of

Γi,t(yi,t|at) which are defined in (27). That is, the result is also true for period t when λt = at and hence the

induction completes.
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As the simplified problem is convex and satisfies the Slater’s condition, there is no duality gap,

i.e., V L
t (wt,xt|λ∗t ) = Vt(wt,xt) where λ∗t is the dual optimal multipliers. By (A9), V H,t(wt|λ∗t ) +∑2

i=1 V i,t(xi,t|λ∗t )≥ V L
t (wt,xt|λ∗t ) = Vt(wt,xt). However, Theorem 2 implies that Vt(wt,xt)≥ V H,t(wt|λ∗t ) +∑2

i=1 V i,t(xi,t|λ∗t ). Therefore, we have V L
t (wt,xt|λ∗t ) = V H,t(wt|λ∗t ) +

∑2
i=1 V i,t(xi,t|λ∗t ) = Vt(wt,xt). �
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