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Companies often face nonstationary demand due to product life cycles and seasonality, and nonstationary
demand complicates supply chain managers’ inventory decisions. This paper proposes a simple heuristic for

determining stocking levels in a serial inventory system. Unlike the exact optimization algorithm, the heuristic
generates a near-optimal solution by solving a series of independent single-stage systems. The heuristic is
constructed based on three results we derive. First, we provide a new cost decomposition scheme based on
echelon systems. Next, we show that the optimal base-stock level for each echelon system is bounded by those
of two revised echelon systems. Last, we prove that the revised echelon systems are essentially equivalent to
single-stage systems. We examine the myopic solution for these single-stage systems. In a numerical study,
we find that the change of direction of the myopic solution is consistent with that of the optimal solution when
system parameters vary. We then derive an analytical expression for the myopic solution and use it to gain
insights into how to manage inventory. The analytical expression shows how future demand affects the current
optimal local base-stock level; it also explains an observation that the safety stock at an upstream stage is often
stable and may not increase when the demand variability increases over time. Finally, we discuss how the
heuristic leads to a time-consistent coordination scheme that enables a decentralized supply chain to achieve
the heuristic solution.
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1. Introduction
Customer demand is often nonstationary in practice.
Causes of nonstationary demand include product life
cycles, seasonality, trends, and economic conditions.
Nonstationary demand poses challenges for supply
chain inventory managers. First, finding an optimal
systemwide solution often requires solving interre-
lated, recursive cost functions between stages across
time. An optimization algorithm, if it existed, is usu-
ally hard to understand and execute. Second, lacking
a simple and intuitive solution approach makes the
system less transparent. It is therefore difficult for the
managers to foresee the impact of changes of the envi-
ronment and react to them. Third, a supply chain is
usually composed of self-interested firms. These firms
may not be willing to implement the system optimal
solution. In a nonstationary demand environment, the
optimal solution is often time varying. It would seem
difficult to design a simple incentive scheme that can
induce each location to choose the optimal stocking
level in each time period.

This paper proposes a simple heuristic that aims
to resolve the above challenges. We consider a serial
inventory system in a finite horizon. The system has

N stages and materials flow from stage N to stage
N − 1, N − 1 to N − 2, etc. until stage 1, where a ran-
dom, nonstationary demand occurs in each period.
This model was first studied by Clark and Scarf
(1960) who show that (time-varying) echelon base-
stock policies are optimal. (Echelon j is a subsystem
that includes stage j and all of its downstream stages.)
Although the structure of the policy is simple, obtain-
ing the optimal solution is quite complex because the
optimal value function of an upstream stage depends
on the optimal base-stock levels of its downstream
stages. Clearly, the calculation becomes more cumber-
some as N increases.

The heuristic we propose breaks down the depen-
dance between stages. That is, it can generate an effec-
tive echelon base-stock level for stage j (2 ≤ j ≤ N )
without knowing the base-stock level of stage i 4i < j5.
More specifically, we show that the optimal echelon
base-stock level for stage j is bounded by the optimal
solutions of two single-stage systems. To establish this
result, we first propose a cost decomposition scheme
based on the echelon system. Then, we show that
the optimal value function for echelon j is bounded
above and below by that of a revised j-stage system.
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We refer to these revised systems as the upper-bound
system and the lower-bound system, respectively.
The upper-bound system is constructed by requiring
stage i 4< j5 to always order up to stage i+ 1’s eche-
lon inventory level in each period. On the other hand,
the lower-bound system is constructed by regulating
stage i’s (i < j) holding and order cost parameters.
We further show that the optimal base-stock level
for the upper-bound (lower-bound) system is a lower
(upper) bound to that of the original echelon j sys-
tem. Lastly, we show that solving these revised j-stage
systems is equivalent to solving a single-stage sys-
tem whose parameters are obtained from the original
system. This result motivates us to propose a heuris-
tic solution for each echelon by solving a single-stage
system with a weighted average of the cost parame-
ters obtained from the upper- and lower-bound sys-
tems. We provide a definitive guidance on choosing
an effective weight based on a cost ratio, representing
the service level of the system.

The above single-stage heuristic provides an ap-
proach to resolve the aforementioned challenges. The
heuristic is very easy to understand and execute: it
can generate an effective solution by solving N inde-
pendent single-stage problems. This separation fea-
ture not only simplifies the computation but also
shortens the computation time by allowing each stage
to solve its own problem in parallel. (In other words,
the heuristic can generate a solution at least N times
faster than the exact algorithm, provided that paral-
lel processing is possible.) To make the system more
transparent, we investigate the myopic solution for
the heuristic single-stage system. We find that the
change of the myopic solution is consistent with that
of the optimal echelon base-stock level when the sys-
tem parameters vary. We then derive an analytical
expression for the myopic solution to approximate the
optimal local base-stock level. The expression shows
how the system parameters affect the local base-
stock level and safety stock. It also shows that the
safety stock of an upstream stage is often stable and
may not increase when the variance of the demand
increases over time. Finally, our heuristic can lead
to a remarkably simple, time-consistent contract that
induces each stage to choose the heuristic solution in
a decentralized supply chain. We refer the reader to
§5.2 for details.

Several researchers have provided methods to sim-
plify the computation for the Clark and Scarf (1960)
model. Federgruen and Zipkin (1984) consider an
infinite-horizon version of the model with indepen-
dent and identically distributed demand and show
that the optimal policy can be obtained by recur-
sively solving two functional equations that have the
form of a single-period problem. Chen and Zheng
(1994) reinterpret Federgruen’s and Zipkin’s (1984)

results, simplify the optimality proof, and present
an optimization algorithm to facilitate the computa-
tion. Gallego and Özer (2003) consider an advanced
demand information model and show the optimality
of a myopic solution. Although the computation effort
is much reduced, finding an upstream solution still is
not easy because it depends on the downstream solu-
tions. Thus, there is a stream of research that aims
to further simplify the computation by solving inde-
pendent single-stage problems. Noteworthy examples
include Dong and Lee (2003), Shang and Song (2003),
Gallego and Özer (2005), and Chao and Zhou (2007).
Our paper can be viewed as a generalization of Shang
and Song (2003) by considering the system with non-
stationary demand.

Several papers have derived solutions for prac-
tical issues in supply chains under nonstationary
demand. Erkip et al. (1990) consider a one-depot-
multiwarehouse system in which the warehouses’
demands are correlated. They derive an expression
for the optimal safety stock as a function of the level
of correlation through time. Ettl et al. (2000) consider
a supply chain network that implements base-stock
policies subject to service level requirements. They
approximate the lead time demand for each loca-
tion and suggest a rolling-horizon approach to find
the base-stock levels for the nonstationary demand
case. Abhyankar and Graves (2001) consider a two-
stage serial system with a Markov-modulated Poisson
demand process; they implement an inventory hedg-
ing policy to protect against cyclic demand variabil-
ity. Graves and Willems (2008) consider a problem
of allocating safety stocks in a supply chain network
where the demand is bounded and there is a guar-
anteed service time between stages and customers;
they propose an algorithm to determine safety stocks
under a constant service time policy. Schoenmeyr and
Graves (2009) examine the placement of safety stocks
in a supply chain with an evolving demand forecast;
they show that the algorithm developed in Graves
and Willems (2000) can be applied to find the optimal
safety stocks and that the system inventory level can
be substantially reduced as the forecast improves over
time. Similar to the above papers, the present work
aims to provide a simple control policy.

Finally, our paper is also related to the coordi-
nation literature. Most coordination papers consider
an infinite-horizon model with stationary demand.
Because of the regenerative process, these infinite-
horizon models are equivalent to single-cycle prob-
lems. These coordination papers often analyze a
decentralized Nash equilibrium solution and provide
contracts to induce the system to achieve the cen-
tralized (first best) solution, e.g., Lee and Whang
(1999), Chen (1999), Cachon and Zipkin (1999), and
Shang et al. (2009). However, when the system fails
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to form a regenerative process, studying the decen-
tralized behaviors becomes more difficult. Donohue
(2000) studies a two-period model with demand fore-
casts. She suggests using time-varying contract terms
to coordinate the system. Parker and Kapuscinski
(2011) consider a two-stage serial inventory system
with capacity limits, where each stage aims to min-
imize its own costs. They show that there exists a
Markov equilibrium policy for a dynamic game in
the decentralized control system. In general, it is very
difficult to derive a coordination contract in a finite-
horizon model. Were such a contract to exist, it would
be too difficult to implement because the contract
terms are often time varying.

2. The Model and Echelon Cost
Decomposition Scheme

We consider an N -stage serial inventory system,
where stage 1 orders from stage 2, stage 2 from
stage 3, etc., until stage N , which orders from an
ample outside supplier. There is a lead time �j
between stage j and stage j + 1, and �j is a posi-
tive integer. Denote �6i1 j7 =

∑j

k=i �k and �6i1 j7 = 0 if
i > j . Let hj be the echelon holding cost rate at stage j
and let b be the backorder cost rate at stage 1. Let
h6i1 j7 =

∑j

k=i hk, and h6i1 j7 = 0 if i > j . Define pj as
the unit order cost for stage j . We use t to index
the time period and count the time backward. Let T
be the planning horizon. Denote D4t5 the demand in
period t. The demands are independent between peri-
ods, but the demand distributions may differ from
period to period. Let D6t1 s7 =

∑t
i=s D4i5, represent-

ing the total demand in period t, t − 1, t − 21 0 0 0 1 s,
where t ≥ s.

The sequence of events in each period is as follows:
At the beginning of a period, each stage j (1) receives
a shipment sent �j periods ago from stage j + 1;
(2) receives an order from stage j − 1; (3) places an
order to stage j +1; and (4) sends a shipment to stage
j − 1. (Stage 1 skips events 2 and 4, whereas stage N
orders from an outside ample source.) Stage 1 decides
its order first, followed by stage 2, and so on, until
stage N . The shipments are made in the opposite
order, starting at stage N , then stage N − 1, etc., until
stage 1. After orders and shipments, demand occurs
during the period. Inventory holding and backorder
costs are assessed at the end of the period.

Clark and Scarf (1960) show that time-varying, ech-
elon base-stock policies are optimal for the above
model. Let the optimal echelon base-stock level be
sj4t5 for stage j in period t. To illustrate the policy,
let us define the following inventory variables. For
stage j at the beginning of period t, define

xj4t5 = echelon inventory level after a shipment is
received (after event (1))1

= on-hand inventory at stage j + inventory in
transit to and held at stage i 4< j5

− backorders at stage 11

vj4t5 = echelon inventory position before an order is
placed (before event (3))1

= inventory in transit to stage j + xj4t51

yj4t5 = echelon inventory position for stage j after an
order is placed (after event (3)).

There are two different notions of inventory positions
in the literature, the echelon inventory order position
(= inventory on order for stage j + xj4t5) and the ech-
elon inventory position vj4t5. The difference between
these two is the number of outstanding orders for
stage j . The echelon inventory order position has been
used to define the policy: Stage j reviews its eche-
lon inventory order position at the beginning of each
period. The stage orders up to sj4t5 if the echelon
inventory order position is less than sj4t5, and does
not order otherwise. This policy is equivalent to the
following shipment scheme: If vj4t5 is less than sj4t5
and stage j + 1 has positive on-hand inventory, stage
j + 1 sends a shipment to stage j to raise vj4t5 to sj4t5,
if possible, or as close as possible to sj4t5. Otherwise,
no shipment is made. In other words, if stage j + 1
sends a shipment after stage j places an order, the
post-ordering echelon inventory position for stage j is
yj4t5= min8sj4t51 xj+14t59.

The optimal base-stock levels sj4t5 can be found by
solving N sets of functional equations sequentially.
More specifically, finding s14t5 is equivalent to solving
a single-stage system. With the known s14t5, one can
compute an induced-penalty cost charged to stage 2.
(The induced-penalty cost is a penalty charged to
an upstream stage for not fulfilling the downstream
order.) The optimal base-stock level s24t5 is the opti-
mal solution obtained from the functional equation
formulated from stage 2’s cost. Continuing this pro-
cedure, with the known si4t5, i < j , one can compute
the induced-penalty cost charged to stage j and find
the corresponding optimal solution sj4t5, j = 31 0 0 0 1N .
Although Clark and Scarf’s (1960) algorithm signifi-
cantly simplifies the computation by converting the
original N -dimension problem into solving a series of
N single-dimension problems, the computation is still
quite involved because the upstream base-stock level
depends on all of its downstream ones.

In this paper, we propose a heuristic for the opti-
mal echelon base-stock levels by solving N indepen-
dent single-stage systems. What we achieved is to
show that the optimal cost and solution of an eche-
lon system are bounded below and above by those
of a single-stage system, respectively. To facilitate our
analysis, we need to show the cost for each echelon
by revising the original Clark and Scarf’s (1960) cost
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decomposition scheme. We demonstrate the idea in a
two-stage system with �1 = �2 = 1. A similar but more
tedious analysis can be carried out for the general sys-
tem. Notice that when �j = 1, vj4t5 and xj4t5 are equal.

Define Lj4xj1 t5 the inventory cost incurred for
stage j in period t when the echelon inventory level
is xj , namely,

L14x11 t5=E6h14x1 −D4t55+ 4b+h1 +h254x1 −D4t55−71

L24x21 t5=E6h24x2 −D4t5571

where 4x5− = max801−x9. The total inventory hold-
ing and backorder cost incurred in period t is then
L14x11 t5 + L24x21 t5. Let ft4x11x25 be the optimal total
discounted cost for the system with initial echelon
inventory levels 4x11x25 when there are t periods to
go. The dynamic program based on the echelon sys-
tem for the Clark and Scarf (1960) model is as follows:
Let f04x11x25= 0. For t ≥ 1,

ft4x11x25

= min
x1≤y1≤x2≤y2

{

p14y1 − x15+ p24y2 − x25+L14x11 t5

+L24x21 t5+�E6ft−14y1 −D4t51y2 −D4t557
}

=Ct4x15+Gt4x251

where

Ct4x15= L14x11 t5− p1x1

+ 6Ut4max8x11 s14t595−Ut4s14t5571 (1)

Gt4x25=Ut4min8x21 s14t595+L24x21 t5− p2x2

+Vt4max8x21 s24t5951 (2)

Ut4y15= p1y1 +�E6Ct−14y1 −D4t5571

Vt4y25= p2y2 +�E6Gt−14y2 −D4t5571

s14t5= arg min
y1

8Ut4y1591

s24t5= arg min
y2

8Vt4y2590

Here, � is the discount rate. Note that Equations (1)
and (2) should be revised for t = 1 and t = 2. When
t = 1, both stages will not order, so C14x15 = L14x1115
and G14x25 = L24x2115; when t = 2, stage 2 will not
order, so G24x25 is the same as (2) except that the last
term is changed to V24x25.

Under the above cost decomposition scheme, the
total system cost ft4x11x25 consists of two echelon cost
functions. The Gt4x25 function is the cost for echelon 2,
which includes the costs directly and indirectly deter-
mined by x2, assuming that stage 1 will always order
up to its optimal base-stock level in each period. The
Ct4x15 function includes the remaining costs directly
determined by x1.

3. Bounds for the Echelon Cost
and Solution

We shall demonstrate that sj4t5, j = 11 0 0 0 1N , is
bounded by the solutions obtained from two single-
stage systems. Let �u

j 6p
u
j 1h

u
j 1 bj14j 7 denote the upper-

bound system for echelon j , where puj , hu
j , bj , and

4j denote the unit order cost, holding cost rate,
backorder cost rate, and the lead time, respectively.
Similarly, let �l

j 6p
l
j1h

l
j1 bj14j 7 denote the lower-bound

system for echelon j . As stated in §2, finding the
optimal base-stock level s14t5 is the same as solv-
ing a single-stage system. That is, for j = 1, the
upper-bound system and lower-bound system have
the same parameters: pu1 = pl1 = p1, hu

1 = hl
1 = h1, b1 =

b + h621N 7, and 41 = �61117. Below we derive the
parameters of the upper-bound and lower-bound sys-
tems for echelon j ≥ 2.

3.1. Upper-Bound System
Consider echelon j with a more restrictive policy:
stage i always orders up to xi+1 in each period
except t ≤ �611 i7 for i < j . (When t ≤ �611 i7, stage i
would not order because of the end of the horizon.)
Let slj4t5 be the resulting optimal echelon base-stock
level for echelon j . Clearly, such a policy is sub-
optimal and the resulting echelon cost is an upper
bound to that of the original system. For this rea-
son, we call this restrictive system the upper-bound
system. In Online Appendix A (available at http://
msom.journal.informs.org/), we show the resulting
dynamic program formulation under this suboptimal
policy for the above two-stage system example.

Under this policy, the resulting yj4t5 is xj+14t5
instead of min8sj4t51 xj+14t59 in the original system.
It is intuitive that the solution slj4t5 is a lower bound to
sj4t5 because more stocks will be shipped to the down-
stream stages in a period. Thus, the optimal echelon
base-stock level in the upper-bound system should be
lower. Theorem 1 confirms this intuition. (All proofs
are available in Online Appendix B.)

Theorem 1. sj4t5 ≥ slj4t5 for t > �611 j7, provided that
vi4t5 < si4t5 for i < j .

The condition in Theorem 1 is to ensure that the
downstream stage i in the original echelon system
will place an order in each period.

Let us take a closer look at the upper-bound sys-
tem. To construct the upper-bound system for eche-
lon j , we regulate stage i 4< j5 to always order up to
xi+1 in each period. By doing so, any unit ordered by
stage j will eventually arrive at stage 1 in �611 j7 peri-
ods. Thus, we can view that each stage i1 i = 21 0 0 0 1 j
as a transit point and that the upper-bound system is
effectively a single-stage system with a lead time of
4j = �611 j7 periods. The holding cost and the back-
order cost at stage 1 in echelon j are hu

j = h611 j7 and
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bj = b + h6j + 11N 7, respectively. (See Proposition 2 of
Shang and Song 2003 for an explanation of how these
cost parameters are derived.)

It is more complicated to compute the unit order
cost for the upper-bound system. In a single-stage
system, we do not consider the inventory holding
cost before a unit arrives at the stage. (That is, the
pipeline inventory holding cost is “external” to the
single-stage system.) However, this is not the case for
the upper-bound system. Any unit ordered by stage j
will incur an order cost when it arrives at each of its
downstream stages and a holding cost in each period
before it arrives at stage 1. Thus, the unit order cost
for stage j in the upper-bound system is the total cost
incurred by a unit when it is ordered until it arrives
at stage 1.

More specifically, for each unit ordered by stage j
in the current period t, pj is incurred. This unit will
arrive at stage j at the beginning of period t − �j .
Then, stage j − 1 has to order it with a cost of pj−1 to
ensure that it continues to move to stage j−1. In addi-
tion, this unit will incur a holding cost hj in each
period before it arrives at stage j − 1. Thus, the cost
(by considering the discount effect) incurred by this
unit when it travels from stage j to j − 1 is pj−14�

�j 5+

hj4
∑�j−1

i=1 �
�j+i−1). Continuing this logic, when this unit

arrives at stage 2 at the beginning of period t−�621 j7,
stage 1 has to order it, incurring an order cost of p1;
this unit will incur a holding cost of h621 j7 in each
period before it arrives at stage 1. The cost incurred
by this unit is p14�

�621 j75 + h621 j74
∑�1

i=1 �
�621 j7+i−15. The

sum of these order costs and holding costs incurred in
transit will be the unit order cost for the upper-bound
system, denoted by puj , where

puj = pj +
j
∑

k=2

(

pk−14�
�6k1 j75+h6k1 j7

(�k−1
∑

i=1

��6k1 j7+i−1

))

0

Proposition 1. The lower-bound solution slj4t5 can be
obtained by solving �u

j 6p
u
j 1h

u
j 1 bj14j 7, for j = 21 0 0 0 1N .

3.2. Lower-Bound System
The approach of constructing the lower-bound system
for echelon j is different: We set hi = 0 and pi = 0 for
i < j . Clearly, the resulting cost is a lower bound to
the echelon j’s cost. Under this construction, stage i
would order up to xi+1 in each period as there is no
benefit of carrying inventory at stage i + 1. Conse-
quently, the optimal order policy is the same as that
for the upper-bound system. In Online Appendix A,
we continue the two-stage example and show the
corresponding dynamic program formulation for the
lower-bound system.

Unlike the upper-bound system, it is not clear
whether an order relationship exists between the
resulting solution, suj 4t5, and the optimal solution sj4t5.

This is because setting downstream cost parameters
equal to zero makes the echelon to stock more. On the
other hand, more inventory pushed to the down-
stream stages makes the echelon stock less. Thus, it is
not clear about the joint effect. Theorem 2 shows that
an order relationship does hold.

Theorem 2. suj 4t5≥ sj4t5, for t > �611 j7.

Because the downstream stages use the same
optimal policy, the lower-bound system is equivalent
to a single-stage system. We can simply set hi = 0
and pi = 0 for i < j in the upper-bound system to
obtain the cost parameters for the lower-bound sys-
tem. That is, plj = pj + hj4

∑�611 j7−1
i=�j

�i5 and the holding
cost rate hl

j = hj .

Proposition 2. The upper-bound solution suj 4t5 can be
obtained by solving �l

j 6p
l
j1h

l
j1 bj14j 7, for j = 21 0 0 0 1N .

3.3. Single-Stage Heuristic
We suggest a heuristic that solves a single-stage sys-
tem with a weighted average of the cost parameters
obtained from the upper- and lower-bound sys-
tems. Specifically, for j ≥ 1, let paj = wpuj + 41 − w5plj
and ha

j =whu
j + 41 −w5hl

j , where 0 ≤ w ≤ 1. We call
the resulting single-stage system heuristic system j ,
denoted by �a

j 4p
a
j 1h

a
j 1 bj14j5 and define the resulting

optimal solution as saj 4t5. In §4, we shall provide a
guidance for choosing an effective w based on the cost
parameters.

4. Numerical Study
The goal of the numerical study is to test the effective-
ness of the heuristic and provide a definitive guidance
to choose the weight w for the heuristic. We consider
two-stage systems with a horizon of T = 10 periods.
Assume that the period demand follows a Poisson
distribution with rate �4t5 in period t. We test the fol-
lowing demand patterns: constant (C), linear increas-
ing (I), linear decreasing (D), concave (V ), and convex
(X) forms. For the constant demand, we set �4t5= 505,
for 1 ≤ t ≤ 10; for the increasing demand, �4t5= 11− t,
for 1 ≤ t ≤ 10; for the decreasing demand, �4t5= t, for
1 ≤ t ≤ 10; for the convex demand, �4t5 = 11 − 2t for
1 ≤ t ≤ 5 and �4t5 = 2t − 10 for 6 ≤ t ≤ 10; finally,
for the concave demand, �4t5 = 2t − 1 for 1 ≤ t ≤ 5,
and �4t5= 22 − 2t for 6 ≤ t ≤ 10.

We first fix h1 = 1, p1 = 4 and change the cost
parameters at stage 2: h2 ∈ 80051111059, p2 ∈ 82169.
We then swap the stage index in the above order and
holding cost parameters to generate another set of
instances. The other parameters are �1 = �2 = 1 and b ∈

8151509. The total number of instances is 120 and the
total number of optimal base-stock levels for stage 2
is 960. The discount rate is �= 0095 for all instances.
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Table 1 Number of the Heuristic Solutions Equal to the Optimal Solutions Under Different Backorder Cost Rates and Weights

w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Max

b = 50
# 88 150 217 296 360 402 411 393 346 303 250 480
�̄ (%) 4014 3027 2053 1083 1021 0081 0073 0086 1035 1074 1097 —

b = 15
# 32 63 96 150 233 302 357 396 397 351 280 480
�̄ (%) 8005 6078 5064 4063 3059 2052 1068 1013 1004 1054 2053 —

Total
# 120 213 313 446 593 704 768 789 743 654 530 960
�̄ (%) 6010 5003 4009 3023 2040 1067 1021 1000 1020 1064 2025 —

To test the effectiveness of the heuristic under dif-
ferent weights, we test w ∈ 800010011 0 0 0 100911009. Note
that w = 000 and w = 100 correspond to the su2 4t5 and
sl24t5, respectively. We define

� =
�s24t5− sa24t5� × 100%

s24t5

to represent the percentage error between the optimal
solution and the heuristic solution. Table 1 shows the
number of optimal solutions (denoted by #) gener-
ated by the heuristic and the average � (denoted by �̄)
under different ws.

We have some observations. First, the optimal solu-
tion s24t5 tends to be closer to slj4t5: there are a total
of 530 (120) sl24t5 4su2 4t55 solutions that coincide the
optimal solution s24t5. The performance of the heuris-
tic under different weights is more robust when b is
large. This is because when b is large, the gap between
su2 4t5 and slj4t5 is smaller. When b = 50 (b = 15), the
best w is 0.6 (0.8), and the heuristic generates 411
(397) optimal solutions. This observation indicates
that when b increases, one should choose a smaller
weight, making the heuristic solution leaning toward
su2 4t5. The choice of w does not seem critical as long
as w falls in some range. For example, when b =

50 (b = 15), using w ∈ 600410087 (w ∈ 600610097) gen-
erates at least 72% of the optimal solutions. We do
not observe a significant difference for �̄ between the
demand forms for a given w. Together, these obser-
vations suggest that the choice of w is closely related
to the backorder cost rate, or equivalently, the sys-
tem’s service level. We therefore suggest inferring w
through the critical fractile b/4b + h611N 75.1 In our
test bed, the critical ratio among all instances ranges
from 0.85 to 0.975. For each instance with a particu-
lar critical fractile, we then find the best w. Table 2 is

1 We may use a more refined critical fractile derived from the
myopic solution of the upper-bound system, for example, 4�4j bj
− pu

j 41 − �55/4�4j 4bj + hu
j 55, to infer the weight for each stage j .

However, we find such a refined approach does not significantly
improve the effectiveness of the heuristic as it is quite robust for w
in some range. Therefore, for easiness of use, we suggest to infer w
by the ratio b/4b+h611N 75.

a summary of showing the relationship between the
best w and the ratio. This table can be used as a guid-
ance to choose an effective w.

To test the effectiveness of the heuristic solution
under the guidance set in Table 2, we consider a
four-stage system with T = 20. We fix h61147 = 1
and consider four different holding cost forms: 4h11
h21h31h45 ∈ 8400251002510025100255, 400410021002100251
400110011004100451 400210021004100259, representing lin-
ear, affine, kink, and jump forms, respectively. Sim-
ilarly, we fix �61147 = 6 and let 4�11 �21 �31 �45 ∈

84212111151 4112121151 4111121259, representing long
lead times at the downstream, middle, and upstream
stages, respectively. For the order costs, we consider
two scenarios: 4p11 p21 p31 p45 ∈ 84111121251 4212111159,
representing high order costs at the upstream and
downstream stages, respectively. For the backorder
cost, let b ∈ 8151509. Finally, for the demand form,
we consider both convex demand 4D4151D4251 0 0 0 1
D42055 = 410191 0 0 0 1111121 0 0 0 1105 and concave de-
mand 4D4151D4251 0 0 0 1D42055 = 41121 0 0 0 110110191
0 0 0 115. There are a total of 96 instances, with 1,632
optimal solutions at stage 2, 1,472 at stage 3, and 1,344
at stage 4. Based on Table 2, we set w = 005 for b = 50
(with b/4b + h611475 = 009804) and w = 007 for b = 15
(with b/4b+h611475= 009375). Table 3 summarizes the
average percentage error �̄ at each stage. The result
indicates that the heuristic is effective when the num-
ber of stages increases.

5. Applications of the Heuristic
This section demonstrates the usefulness of the single-
stage heuristic. For managers, it is crucial to learn
how the system parameters affect the stocking deci-
sion in a supply chain. Section 5.1 provides a simple
analytical expression to approximate the optimal local
base-stock level and the safety stock at each stage.
Section 5.2 considers a decentralized supply chain.
As we shall demonstrate, the heuristic leads to a sim-
ple, time-consistent contract that enables the supply
chain to achieve the heuristic solution.
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Table 2 Selecting an Effective Weight Based on the Cost Ratio

b/4b+ h611 N75 40100857 400851009257 400925100957 400951009757 400975100997 40099115
w 009 008 007 006 005 004

Table 3 Average Percentage Error �̄ for the Heuristic Solution saj 4t5 in
the Four-Stage System

Backorder cost rate Stage 2 (%) Stage 3 (%) Stage 4 (%)

b = 15 1.00 1.60 1.71
b = 50 0.68 1.14 1.31

5.1. Approximating the Optimal
Base-Stock Level

We propose using the myopic solution to approximate
the optimal base-stock level. It is well known that
the myopic solution is an upper bound to the opti-
mal solution for a single-stage system (Zipkin 2000,
pp. 378–379). In our numerical study, we find that in
all cases the myopic solution smj 4t5 moves in the same
direction as the optimal solution sj4t5 when the sys-
tem parameters change. (Table 4 is an example when
demand has a concave form.) This result motivates
us to use smj 4t5 as an approximation for saj 4t5. In addi-
tion, for any echelon base-stock policy, there exists
an equivalent local base-stock policy, and vice versa
(Zipkin 2000, p. 306); see Equation (3) below. With
these two results, we can use the myopic solution to
derive an approximation for the optimal local base-
stock level. Below we lay out the detailed steps.

Let smj 4t5 be the myopic solution for �a
j 4p

a
j 1h

a
j 1

bj14j5.

Proposition 3. For t >4j ,

smj 4t5 = arg min
sj

8P4D6t1 t −4j 7≤ sj5 > �j91

where

�j =
�4j bj − paj 41 −�5

�4j 4bj +ha
j 5

0

Note that when t <4j , stage j will not order. When
t =4j +1, smj 4t5 is equal to the solution obtained from
the above equation except for the removal of the term
41−�5 in the numerator due to the termination value
being equal to zero.

To obtain a simple analytical expression for smj 4t5,
we apply normal approximation on D6t1 t − 4j 7. Let
the mean of D6t1 t −4j 7 be �6t1 t −4j 7 and the stan-

dard deviation be �6t1 t − 4j 7 =

√

Var6D6t1 t −4j 77.
Then,

smj 4t5 = �6t1 t −4j 7+�6t1 t −4j 7ê
−14�j50

The local base-stock level is sm
′

1 4t5 = sm1 4t5, and for
j = 21 0 0 0 1N ,

sm
′

j 4t5 = smj 4t5− smj−14t5

= �6t −4j−1 − 11 t −4j 7+�6t1 t −4j 7ê
−14�j5

−�6t1 t −4j−17ê
−14�j−150 (3)

The first term in Equation (3) is the average pipeline
inventory in period t, which depends on the aver-
age �j periods of future demand in 6t − 4j−1 − 1,
t −4j 7. The second term is the safety stock for stage
j in period t, denoted by ssmj 4t5, which depends on
the cost ratios �j and �j−1, and the variability of the
demand in 6t1 t −4j 7.

Equation (3) allows us to analytically investigate
how the system parameters affect the optimal base-
stock level and the safety stock at each stage. For
example, if we are interested in the change to the
amount of safety stock of the upstream stage in a two-
stage system, we can define the change to stage 2’s
safety stock in period t as

ãssm2 4t5

= ssm2 4t − 15− ssm2 4t5

= 4�6t − 11 t − 1 −427−�6t1 t −4275ê
−14�25

− 4�6t − 11 t − 1 −417−�6t1 t −4175ê
−14�150 (4)

From the above equation, we can see that ãssm2 4t5 will
be fairly small unless there is a significant difference
between Var6D4t − 1 − 4257 and Var6D4t − 1 − 4157.
This implies that the safety stock at the upstream
stage should be fairly stable. (A similar conclusion is
numerically observed in Graves and Willems 2008.)
In addition, ãssm2 4t5 may not be positive even if
Var6D4t57 < Var6D4t − 157, ∀ t. More specifically, when
either p2 is large, or h2 is large, or b is small, ê−14�25
tends to be smaller than ê−14�15, causing the differ-
ence in (4) to become negative even when the demand
variance increases over time. This suggests that the
safety stock at an upstream stage may not increase
with the demand variability.

Example 1. We consider a two-stage system with
�1 = �2 = 1, p2 = 6, h2 = 1, p1 = 4, h1 = 1, b = 15,
and � = 0095. The demand follows a Poisson distri-
bution with mean rate shown in Table 4. We report
the optimal echelon, heuristic, and myopic base-stock
levels in each period. We also report the optimal
local base-stock level as well as the corresponding
safety stock for stage 2. As shown, the change of the
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Table 4 Two-Stage Example with the Optimal, Heuristic, and Myopic Solutions, and the Local Base-Stock
Levels and the Resulting Safety Stocks

Period 4t5 10 9 8 7 6 5 4 3 2 1
Demand rate 2 4 6 8 10 9 7 5 3 1
s14t5 10 15 20 24 26 22 16 10 5 —
s24t5 16 22 29 33 31 24 16 6 — —
sa24t5 16 23 29 33 31 24 16 7 — —
sm1 4t5 10 15 20 24 26 23 18 12 7 —
sm2 4t5 16 23 29 33 32 26 19 7 — —
s

′

24t5= s24t5− s14t5 6 7 9 9 5 2 0 −4 — —
ss24t5= s

′

24t5−E6D6t − 21 t − 277 0 −1 −1 0 −2 −3 −3 −5 — —

myopic solution is consistent with that of the opti-
mal solution; the safety stock may decrease although
the demand rate increases (e.g., from t = 10 to t = 9).
Online Appendix C summarizes the performance of
the myopic solution based on the same 120 two-stage
instances in §4.

5.2. Coordination Mechanism
In reality, a supply chain is often composed of inde-
pendent firms, each pursuing its own best interest.
Because the centralized solution is often time vary-
ing, a coordination contract, if it existed, would have
nonstationary parameters. The nonstationary contract
terms would make the implementation difficult. Fol-
lowing a similar idea of Shang et al. (2009), we show
that our heuristic can lead to a simple, time-consistent
contract that induces the supply chain partners to
choose the heuristic solution saj 4t5 in each period.

A key enabler for implementing this contract is a
supply chain integrator who knows the heuristic solu-
tion and is responsible for payment transfers between
the firms. The integrator designs a contract for each
stage j with three cost parameters 4�jp

a
j 1 �jh

a
j 1 �jbj5,

aiming to induce the stage manager to choose saj 4t5 in
each period, where �j ≥ 0 is a stage-specific constant.
The calculation for obtaining �j is explained in Online
Appendix D.

The players in this game are the integrator and each
of the echelon managers. The contract specifies the
payment transfers between these players at the end of
each period after the demand realizes. More specifi-
cally, the following payment scheme is announced to
all players before the game: At the end of each period
after the cost is evaluated, echelon j manager first
pays the integrator based on the accounting echelon
inventory level x̄j according to the contract cost terms.
(The accounting echelon inventory level is defined as
the echelon inventory level by assuming that there is
an ample supply from upstream.) Then, the integra-
tor compensates the actual cost incurred for echelon j
after echelon j implements the contract.

The goal of each player is to minimize the total cost
in T periods. In Online Appendix D, we demonstrate
that such a contract is implementable and can achieve
the heuristic cost.

6. Concluding Remarks
The solution bounds and the heuristic can be
extended to more general supply chain structures.
Rosling (1989) shows that an assembly system can
be transformed to a serial system with modified lead
times. Because Rosling’s result does not require any
demand assumptions, our heuristic can be applied
to the assembly system. The proposed heuristic can
be applied to a one-warehouse-multiretailer distribu-
tion system with identical retailers. Under the so-
called balance assumption (i.e., the inventory levels
of the retailers can be freely and instantaneously
redistributed as needed), the distribution system is
equivalent to a two-stage serial system, where the
downstream stage can be viewed as a composite
stage that includes all retailers’ demands. As shown
in Federgruen and Zipkin (1984), one can apply the
Clark and Scarf (1960) serial algorithm to obtain
the echelon base-stock level for the warehouse and the
composite stage. Then, one could apply the myopic
allocation rule in each period to the retailers to deter-
mine the retailers’ base-stock levels. Federgruen and
Zipkin (1984) reports that this approach can gener-
ate a very effective solution. Clearly, we can apply
the same technique to generate single-stage approxi-
mations for the resulting two-stage system and then
apply the myopic allocation for the system. It will
be interesting to examine whether our results can be
applied to the nonidentical retailer system. We leave
this for future research.

Our solution bounds as well as the heuristic can
be extended to a system with Markov-modulated
demand. More specifically, assume that the demand
process is driven by a homogeneous, discrete-time
Markov chain W with K states. It is known that
a state-dependent echelon base-stock policy is opti-
mal (e.g., Chen and Song 2000, Muharremoglu and
Tsitsiklis 2008). Let sj4k1 t5 be the optimal echelon
base-stock level for stage j when the demand state
is k in period t, k = 11 0 0 0 1K. Following a similar anal-
ysis, we can derive single-stage bounds slj4k1 t5 and
suj 4k1 t5 for each demand state k in each period t such
that slj4k1 t5 ≤ sj4k1 t5 ≤ suj 4k1 t5. A detailed analysis is
available from the author.
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Electronic Companion
An electronic companion to this paper is available as part of
the online version that can be found at http://msom.journal
.informs.org/.
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