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There is an ongoing debate on how providing a subsidy for one energy source affects the invest-

ment level of other sources. To investigate this issue, we study a capacity investment problem for a

utility firm that invests in renewable and conventional energy, with a consideration of two critical

factors. First, conventional sources have different levels of operational flexibility, i.e., inflexible

(e.g., nuclear and coal) and flexible (e.g., natural gas). Second, random renewable energy supply

and electricity demand are correlated and nonstationary. We model this problem as a two-stage

stochastic program in which a utility firm first determines the capacity investment levels, followed

by the dispatch quantities of energy sources, to minimize the sum of investment and generation-

related costs. We derive the optimal capacity portfolio to characterize the interactions between

renewable and conventional sources. We find that renewable and inflexible sources are substitutes,

suggesting that a subsidy for nuclear or coal-fired power plants leads to a lower investment level

in wind or solar energy. On the other hand, wind energy and flexible sources are complements.

Thus, a subsidy for flexible natural gas-fired power plants leads to a higher investment in wind

energy. This result holds for solar energy if the subsidy for the flexible source is sufficiently high.

We validate these insights by using real electricity generation and demand data from the state of

Texas.
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1 Introduction

Policymakers have introduced various subsidies to encourage investment in clean energy sources

in order to reduce carbon emissions. For instance, the U.S. government provides a 30% subsidy

for investment costs in solar energy (SEIA 2016), and the state of New York is planning to offer

a multibillion-dollar subsidy for nuclear power plants (Yee 2016). However, there is an ongoing

debate on how an increased investment in one energy source (because of a subsidy) affects the

investment in other energy sources. On the one hand, Dotson (2013) explains that renewables

are supported by nuclear power because nuclear can generate steady electricity to supplement

intermittent renewables. On the other hand, the former chairman of the Federal Energy Regulatory

Commission states that no new nuclear investment is needed in the presence of increased renewable

investment because nuclear power is inflexible, that is, a nuclear plant cannot be ramped up or down

quickly (Straub and Behr 2009). Contradictory claims are also reported on the interaction between

renewable and natural gas-fired power plants. In The New York Times, Kotchen (2012) claims

that low natural gas prices are a “trap” for renewables because, in response to the lower natural

gas cost, a utility firm would invest more in natural gas-fired plants than in renewables. On the

contrary, in The Wall Street Journal, Keith (2013) calls this claim a “myth” related to renewables

and explains that natural gas can complement renewables by alleviating the intermittency problem.

In this paper, we investigate these interactions between energy sources by focusing on the capacity

investments of utility firms, which undertake the majority of the energy investments in the U.S.

In recent years, utility firms have significantly invested in renewable sources, such as solar and

wind energy, because these sources provide electricity with negligible generation costs. Utility

firms also invest in conventional sources, which are categorized into two groups—inflexible and

flexible—based on operational flexibility, that is, whether the output of the source can be ramped

up or down quickly. A nuclear or coal-fired power plant is inflexible because its output cannot

be changed rapidly due to technical reasons. A combined-cycle natural gas-fired power plant is

also relatively inflexible. On the other hand, open-cycle natural gas- or oil-fired power plants are

flexible (DOE 2011). From the cost perspective, an inflexible source has higher investment but lower

generation (fuel) costs than a flexible source. Considering these characteristics, it is challenging for

a utility firm to determine the right capacity investment portfolio that minimizes its investment

2



and generation costs while maintaining a certain reliability level (i.e., the chance of no blackouts).

For example, Smith (2013) has identified a “looming energy crisis” for utility firms in California

because they do not have “the right mix of power plants” and are vulnerable to reliability problems

because of over-reliance on intermittent renewables. Motivated by these policy discussions, we pose

the following research questions: What capacity portfolio for a utility firm minimizes the investment

and generation costs in the presence of inflexible, renewable, and flexible sources? What is the role

of operational flexibility in the interaction between conventional and renewable sources? How does

a carbon tax policy affect energy investments?

We model this problem following the decision process of a utility firm for making capacity in-

vestments. Specifically, a utility firm first takes a long-term, strategic capacity decision by investing

in different energy sources. The invested capacity level of a source is the maximum output that the

utility firm can dispatch from that source during each of the operating periods, which is often set to

be five minutes. The decision of dispatching the electricity supply to match the demand is based on

five-minute-ahead forecasts of the electricity demand and the intermittency of renewable sources. If

the demand cannot be satisfied, a penalty cost is incurred. This penalty cost represents consumers’

inconvenience costs and the utility firm’s energy procurement cost from external sources. One

challenge of this problem is that the random electricity demand and renewable energy supply are

not only correlated in a given period, but they are also serially correlated and nonstationary over

time. We take these into account and formulate the problem as a two-stage stochastic program with

recourse. In the first stage, under the joint distribution of demand and supply uncertainties, the

firm makes a strategic decision by determining the capacity investment in the inflexible, renewable,

and flexible sources. In the second stage, the firm determines the amount of electricity dispatched

from these energy sources for each operating period based on the forecasts. The objective of the

utility firm is to minimize the total expected cost, which is the sum of the initial investment costs,

the electricity generation costs, and the penalty costs of supply shortage.

We solve the utility firm’s investment problem by using backward induction and characterize

the optimal dispatch policy: all inflexible capacity is first used, followed by the renewable energy

capacity, as its generation cost is negligible compared to the flexible source, which is used as the

last resort. Based on this optimal dispatch policy, we determine the optimal investment level for

each source. We obtain a multi-dimensional newsvendor-type solution. That is, the utility firm
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balances the underage cost (e.g., the penalty cost due to supply shortage) with the overage cost

(i.e., the investment cost) for each energy source in the demand and intermittency space. In the

most practical case in which the investment levels of all sources are positive, the critical fractile

associated with the flexible source determines the probability of meeting the demand. This indicates

that the reliability of the electricity system (proxied by the loss-of-load probability, see Corollary 1)

is determined by the cost parameters of the flexible source and the penalty cost rate. This finding

reveals an important policy insight that the reliability is only affected by a subsidy provided for

the flexible source but not the subsidies for renewable and inflexible sources.

To identify how a subsidy for one source affects the investment level of the other sources, we

examine the interaction between energy sources. Specifically, we define two sources as substitutes

(complements, respectively) if a decrease in the investment cost of one source leads to a decrease (an

increase, respectively) in the investment level of the other. One might think that energy sources

are substitutes with each other because they jointly satisfy the demand. Interestingly, we show

that renewable and flexible sources are complements under certain conditions. This result is due

to operational flexibility. Specifically, increased investment in the flexible source (due to a subsidy)

enables the utility firm to adjust its energy output quickly, which alleviates the intermittency

problem. Consequently, the utility firm also increases the renewable investment to take advantage

of its negligible generation cost. This effect is particularly strong for wind energy because a higher

output from the flexible source satisfies the high demand during daytime when the wind output

tends to be low. On the other hand, renewable and inflexible sources are substitutes. We verify

these analytical results in a case study based on real electricity generation and demand data from

Texas in Section 6, and we find that the complementarity effect also holds for solar energy.

We also consider the effect of a carbon tax on energy investments. Many experts claim that

taxing carbon emissions motivates investment in renewable sources (c.f., Caperton 2012 and Porter

2014). Our analysis indicates that this claim does not hold if the inflexible source is carbon-free

nuclear energy. In this case, the carbon tax only increases the generation cost of the flexible source.

This results in a reduction in the investment of the flexible source, which, in turn, reduces the

investment of the renewable source due to the complementarity effect.

The rest of the paper is organized as follows. Section 2 reviews related literature. Section 3

introduces our model. Section 4 derives the optimal capacity investment portfolio. Section 5
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analyzes the interactions between energy sources. Section 6 validates our main results by using

real data through a case study. Section 7 considers several extensions of our model, including the

effects of carbon tax. Section 8 concludes.

2 Literature Review

There is extensive literature in energy economics that studies capacity investment in conventional

energy sources (see Crew et al. (1995) for a review of the early literature). With the advent of

renewable energy, interest in this topic has increased in academia and practice because of the unique

features of renewable energy: intermittency and negligible generation cost. It is not clear how the

addition of this new energy source affects the investment portfolio. Lee et al. (2012) and Cochran

et al. (2014) provide discussions on the interaction between renewable and flexible sources and

argue that they can be complements. To determine optimal investment levels, researchers have

used analytical models. For example, Garcia et al. (2012) and Kong et al. (2018) characterize

capacity investment levels in renewable and conventional energy. However, they do not investigate

the interactions between these energy sources.

Most papers that analytically study these interactions focus on two energy sources and conclude

that renewable and conventional sources are substitutes. For example, Ambec and Crampes (2012)

compare the optimal capacity portfolio in a centralized and a decentralized setting. Baranes et al.

(2017) conduct a what-if analysis by varying the investment level of a conventional source to examine

the corresponding optimal investment in renewable energy. Pinho et al. (2018) study the effects

of renewable energy on electricity spot markets. Our paper is different from the aforementioned

papers in that we jointly optimize the investment levels of three energy sources under a general

stochastic demand and study their interactions in the optimal investment portfolio. Unlike these

papers, we find that renewable and conventional sources can be complements.

To the best of our knowledge, Chao (2011) is the only paper that analytically characterizes

the optimal investment portfolio and investigates the interactions between three energy sources: a

wind farm, a combined-cycle natural gas turbine, and a regular natural gas turbine. Compared to

the regular turbine, the combined-cycle turbine has higher investment and lower generation costs.

Consequently, the combined-cycle turbine is similar to an inflexible source in our model and the

5



regular turbine is similar to a flexible source. In a simulation study, Chao (2011) observes that wind

energy and the inflexible source (combined-cycle turbine) are substitutes, whereas wind energy and

the flexible source (regular turbine) are complements. Our contribution is to analytically validate

this insight.

Empiricists also explore this issue through data. Devlin et al. (2017) provide a summary of

empirical papers and industry reports on the interaction between wind energy and natural gas

from the perspectives of government policy, technical characteristics of power plants, and natural

gas spot markets. Focusing on the electricity network of the U.K. and Ireland, Devlin et al. (2017)

indicate that natural gas is crucial to the continued growth of renewable energy, suggesting that

flexible natural gas-fired power plants and wind energy are complements. Marques et al. (2010) use

the data from the E.U., where most natural gas-fired power plants are inflexible combined-cycle

turbines. They find that a higher natural gas price leads to a lower investment in natural gas-fired

power plants and a higher investment in renewable energy. On the other hand, Bushnell (2010)

and Shrimali and Kniefel (2011) use data from the U.S., where most natural gas-fired plants are

flexible open-cycle turbines. They find that natural gas-fired plants complement wind energy. Our

analytical results reconcile these empirical findings.

In our model, we consider a utility firm whose objective is to minimize its total cost. Neverthe-

less, some papers consider a rate-of-return regulation under which a utility firm earns a guaranteed

rate-of-return (e.g., 10%) over its cost. See, for example, Nezlobin et al. (2012). Our objective is not

against the rate-of-return regulation, because a utility firm is more likely to satisfy the regulation

if the cost of electricity generation is minimized. In fact, according to The Regulatory Assistance

Project (2011, p.6), an important goal of the rate-of-return regulation is to minimize the cost of

electricity generation.

Renewable energy has become an emerging topic in the operations management literature.

Wu and Kapuscinski (2013) investigate how to cope with the intermittency of renewable sources.

Al-Gwaiz et al. (2016) and Sunar and Birge (2018) characterize the supply function equilibrium

in an electricity spot market. These papers do not endogenize capacity investment decisions in

renewable and conventional sources. Hu et al. (2015) model capacity investments and show that as

the granularity of the data on electricity demand and supply increases, more accurate investment

decisions can be made. Aflaki and Netessine (2017) identify the critical role of intermittency in
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determining the optimal capacity portfolio and effects of carbon tax policy. Kök et al. (2018)

investigate the joint pricing and capacity investment problem for a utility firm and find that the

renewable energy investment of the utility firm is higher under flat pricing compared to that under

peak pricing. Although Hu et al. (2015), Aflaki and Netessine (2017), and Kök et al. (2018) study

capacity investment in energy sources, their focus is different from ours. Their results indicate

that renewable and conventional sources are substitutes. We refine this conclusion by modeling

operational flexibility to show that renewable and flexible conventional sources can be complements.

Our definition of operational flexibility is similar to volume flexibility in the supply chain

literature in which the production quantity can be altered depending on the realized demand.

Van Mieghem and Dada (1999) consider postponing the production decision in a single source

setting. Tomlin (2006) finds the importance of volume flexibility for a firm that can source ei-

ther from an unreliable supplier or a reliable and flexible supplier. Volume flexibility is similar to

quick response, where a firm can place additional orders after observing some initial information

on demand (c.f., Fisher and Raman 1996). We complement this literature by jointly considering

inflexible, flexible, and unreliable (renewable) sources to study the interactions between them.

Another flexibility type is process flexibility which is the ability to manufacture different prod-

ucts at the same facility (c.f., Fine and Freund 1990 and Jordan and Graves 1995). Several papers,

including Van Mieghem (1998) and Goyal and Netessine (2011), study optimal capacity invest-

ments in two inflexible (dedicated) and one flexible source to meet the stochastic demand for two

products. In this literature, the inflexible sources are complements with each other, and the flexible

source is a substitute for both of them (Van Mieghem 1998). Different from these papers, which

focus on demand-side uncertainty, we consider both demand- and supply-side uncertainties (due

to the renewable source). We find that renewable and flexible sources are complements and the

inflexible source is a substitute for both.

Finally, our paper relates to the dual sourcing literature in which a firm procures from two

suppliers: the first supplier features a long lead time and a low procurement cost, whereas the second

has a short lead time and a high cost. In this literature, Sting and Huchzermeier (2012) is closest

to our paper. The authors consider a manufacturer who invests capacity in a responsive, onshore

facility and also replenishes from an offshore supplier who is unreliable but less expensive. After

demand and supply uncertainties are realized, the manufacturer orders from its responsive capacity
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to satisfy the demand. Sting and Huchzermeier (2012) characterize the optimal production policy

and show that the service level is determined by the critical fractile of the responsive capacity. We

extend these results by considering three sources: the two reliable sources, that is, the flexible and

the inflexible sources, can be viewed as an onshore and an (reliable) offshore supplier respectively,

the intermittent renewable source can be viewed as an (unreliable) onshore supplier. Different from

their findings, our results suggest that not all sources are substitutes, although any two source

combinations (with the investment level of the third source fixed) of our model gives the same

result as Sting and Huchzermeier (2012).

3 Model

To facilitate the formulation of our model, we first describe how a monopolist utility firm makes

its capacity investment decision in practice. The typical process starts from forecasting the elec-

tricity demand and the intermittency of renewable energy supply in a geographical region. The

uncertainties of demand and intermittency are correlated because of the common effect of weather

conditions. In addition, demand and intermittency are serially correlated (as time series) and non-

stationary over time: the demand changes throughout a day (EIA 2011c) and wind energy exhibits

seasonal fluctuations (EIA 2015). Using the demand and supply forecasts as an input, the utility

firm makes a strategic decision on its investment level in inflexible, renewable, and flexible energy

sources. The investment level of a source is the maximum output that the utility firm can dispatch

from that source. In daily operations, the utility firm’s objective is to match the random demand

with the electricity supply for each operating period, which is often set to be five minutes. The

utility firm uses the five-minute-ahead forecasts of demand and supply as inputs and decides how

much electricity to generate from the renewable and flexible sources in each operating period.1 The

inflexible source, on the other hand, is dispatched at a constant level. This is because a utility firm

cannot frequently change the output of an inflexible source due to technical reasons (c.f., Shively

and Ferrare 2008, p. 39, Denholm et al. 2010, and DOE 2011).

An important input for the dispatch decision is the short-term demand and supply forecasts,

1In general, renewable energy is not curtailed. That is, the entire capacity of the renewable source is dispatched
because its generation cost is negligible.
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which are quite accurate.2 In Figure 1, we plot the Mean Absolute Percentage Error (MAPE) for

demand and intermittency forecasts in 2014 for the Southwest Power Pool (SPP), the network of

utility firms in the southwest U.S. Each circle represents one of the 288 operating periods (i.e., five-

minute intervals) during a day. For each period, we plot the average error over a year for day-ahead

and five-minute-ahead forecasts in the vertical and horizontal axes, respectively. All circles remain

well above the 45 degree line, indicating that the forecasts made five-minutes ahead are much more

accurate compared to the forecasts made a day ahead. Thus, a utility firm has relatively accurate

forecasts of demand and supply before determining the dispatch quantities.
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Figure 1: Forecast Errors in the Southwest Power Pool, 2014

The costs involved in the above process are the investment costs and the generation (variable)

costs of electricity. Specifically, the generation cost of the renewable source is negligible, and the

generation cost of inflexible sources, such as nuclear or coal-fired power plants, is usually smaller

than that of flexible sources, such as natural gas (EIA 2017). In some rare occasions, blackouts

occur if the demand cannot be fulfilled by the dispatched supply. Blackouts are costly because

a utility firm usually needs to purchase electricity from external sources in order to avoid fines

imposed by government regulations. The objective of the utility firm is to minimize the total cost

consisting of the investment costs, generation costs, and penalty costs due to potential blackouts.

We refer to two latter costs as generation-related costs.

We formulate our problem as a stochastic program with recourse based on the above practice.

We consider N operating periods in the planning horizon. That is, on the operational level, we

2In practice, the dispatch decision may also include a day-ahead planning phase.
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consider multi-period dispatch decisions. On the strategic level, we only focus on one-time capacity

investments.3 The problem consists of two stages: the first stage is related to the initial capacity

investment decision, and the second stage is related to the dispatch decision to match the demand

with the supply. Let the variable generation cost (in dollars per unit capacity for a period) of the

inflexible and flexible sources be cI and cF , respectively. We normalize the variable cost of the

renewable source to zero (cR = 0). The demand and intermittency follow a nonstationary and

serially correlated stochastic process, such as a vector autoregressive model in addition to trend

and seasonality (see Appendix A). Let the joint probability density function of the demand and

supply in period n be f(Ξn,Θn)(·, ·), where Ξn is a bounded, nonnegative random variable that

represents the five-minute-ahead demand forecast and, Θn is a random variable with a support

of [0,1] representing the intermittency forecast. That is, renewable energy investment of kR results

in an electricity output of ΘnkR in period n. Here, Ξn and Θn are correlated, and the joint

distribution f(Ξn,Θn)(·, ·) represents the marginal distribution (with respect to time) of the demand

and intermittency process. The sequence of events is illustrated in Figure 2.

t = −T years t = 0 min t = 5 mint = −5 min

Operating
Period
n = 1

Operating
Period
n = N

Demand and Intermittency
Forecasts

(Ξn,Θn) → (ξ, θ)

Investment Decision
kI , kR, kF

Dispatch Decision
Inflexible Source

qI
Stage 1

Dispatch Decision
Renewable and Flexible Source

qR, qF
Stage 2, Period n

· · ·

· · ·

Figure 2: Sequence of Events

We formulate the problem backwards. Let qI , qR, and qF denote the dispatch levels of the

inflexible, renewable, and flexible sources, respectively. Similarly, ki denotes the investment level

in source i ∈ {I,R, F}. Any unmet demand results in an undersupply penalty cost, with rate

r, proportional to the amount of electricity demand that cannot be satisfied by the dispatched

electricity from the three sources. This linear penalty cost is consistent with the literature (c.f.,

Crew et al. 1995), and our model can be generalized by considering an oversupply penalty (see

Section 7.2). The second stage problem of the utility firm is to minimize the sum of generation-

3We assume that the utility firm forms a capacity portfolio without any existing investment. Our results can be
extended to the case in which the existing generation capacity has the same generation cost as the new capacity.
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related costs for each period n after observing demand and intermittency forecasts ξ and θ:

C̃ (qI , kR, kF , ξ, θ) = cIqI +


minqR,qF≥0 cF qF + r (ξ − qI − qR − qF )+

subject to qR ≤ θkR

qF ≤ kF

, (1)

where (x)+ = max{x, 0}.

In the above formulation, the decision variables are the dispatch levels of the renewable and

flexible sources, whereas the dispatch level of the inflexible source qI is given as a state variable.

This is because the inflexible source is dispatched at a constant level, which cannot be adjusted in

each period. Thus, we consider qI as a long-term decision and optimize it in the subsequent first

stage problem. This formulation implicitly assumes that the inflexible source will be dispatched

earlier than the other sources, which is consistent with the current practice.4 Recall that ξ and θ

in (1) are the five-minute-ahead forecasts of the demand and the intermittency, respectively. As

explained above, these forecasts are quite accurate. Hence, as in Wu and Kapuscinski (2013), we

take ξ and θ as the realizations of the demand and the supply uncertainty, respectively.

In the first stage problem, the utility firm determines its nonnegative capacity investment levels

along with the dispatch decision of the inflexible source so as to minimize its expected total cost:

min
k∈R3

+

Π̄ (k) = αIkI + αRkR + αFkF + min
0≤qI≤kI

E

[
N∑
n=1

C̃ (qI , kR, kF ,Ξn,Θn)

]
, (2)

where k = (kI , kR, kF ), αi is the unit investment cost in source i ∈ {I,R, F}, E[·] denotes the

expectation operator, N is the number of operating periods, and C̃ (qI , kR, kF ,Ξn,Θn) is the solu-

tion of the second stage problem given in (1). The expectation is taken with respect to the joint

distribution of demand and supply (Ξn,Θn) in period n from the perspective of period 0, that is,

the planning stage for the utility firm. Here, in addition to the capacity investment levels, the

utility firm determines the dispatch level of the inflexible source.

This stylized model makes simplifying assumptions to ensure tractability. First, as in Al-Gwaiz

4In fact, it is also optimal to first dispatch the renewable source under this formulation. That is, it is also optimal
to set qR = θkR in all periods because cR = 0, and there is no explicit oversupply penalty. Nevertheless, we explicitly
consider qR to ensure consistency with the second stage problem of the spot market setting given in (13)–(16). In the
presence of a spot market, it might not be optimal to dispatch all renewable capacity as we explain in Section 7.1.
Finally, in Section 7.2, we also consider an explicit oversupply penalty.
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et al. (2016), we suppose that between consecutive periods, the output of a conventional source

either cannot be changed at all or can be changed instantaneously without any constraint. This

is an approximation of the practice where each power plant has a different level of flexibility

based on its generation characteristics. These characteristics are considered in the case study in

Section 6, and we find that our conclusions continue to hold. Second, we consider a monopolist

utility firm that does not have access to an electricity spot market. That is, the firm is responsible

for matching supply and demand by using its own generation sources. This is not uncommon in

practice because approximately half of U.S. utility firms operate as a monopoly (FERC 2015b).

Nevertheless, we consider an electricity spot market in Section 7.1. Finally, although we do not need

any assumptions on the joint distribution of the demand and supply uncertainty in characterizing

the optimal capacity portfolio, we require certain sufficient conditions to hold in analyzing the

interactions between energy sources. We present and discuss these conditions in Section 5 as

Assumption 1.

In the remainder of the paper, we use the terms “increasing,” “decreasing,” and “convex” in

the weak sense. We denote the gradient operator as ∇. Finally, “X|·” denotes the conditional

probability. All proofs and parameter values for numerical studies are given in the Appendix.

4 Optimal Capacity Investments

In this section, we characterize the optimal capacity investments of a utility firm. We first simplify

the problem given in (2) by showing that at optimality, the dispatch level of the inflexible source

is always equal to its capacity investment level, i.e., qI = kI . The intuition is that the firm should

always dispatch all of its inflexible capacity kI at every period because the firm can otherwise

achieve a strictly lower cost by decreasing kI .

Lemma 1. Consider the investment problem given in (2). It is optimal to set qI = kI .

Lemma 1 is consistent with the practice because the utilization of nuclear power plants in the

U.S. is close to 90% (EIA 2017), and these plants operate continuously, except for maintenance

(EIA 2011b). By using Lemma 1, we substitute kI for qI in the second stage dispatch problem
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given in (1):

C (k, ξ, θ) = min
qR,qF≥0

cF qF + r (ξ − kI − qR − qF )+ (3)

subject to qR ≤ θkR (4)

qF ≤ kF . (5)

Similarly, under Lemma 1, the capacity investment problem in the first stage becomes

min
k∈R3

+

Π̄ (k) = (αI + cIN) kI + αRkR + αFkF + E

[
N∑
n=1

C (k,Ξn,Θn)

]
, (6)

where we charge the generation cost of the inflexible source to its entire capacity for each of the N

periods. In the remainder of the paper, we focus on these simplified formulations of the first and

second stage problems.

We next characterize the optimal capacity investments by backward induction, i.e., by first

solving the second stage problem given in (3)–(5). Let q∗i (k, ξ, θ) be the optimal dispatch level

of energy source i ∈ {R,F} given an investment vector k, demand forecast ξ, and intermittency

forecast θ. The optimal dispatch policy for renewable and flexible sources is shown below.

Lemma 2. Consider the dispatch problem given in (3)–(5). The optimal dispatch policy is to set

q∗R (k, ξ, θ) = min (θkR, ξ − kI)+ and q∗F (k, ξ, θ) = min (kF , ξ − kI − θkR)+ .

Lemma 2 shows that the utility firm first dispatches its renewable source up to its available

capacity θkR if demand forecast ξ exceeds the inflexible source capacity kI in a period. Then,

the flexible source is dispatched for the remaining demand. This is because the renewable source

incurs a negligible generation cost compared to the flexible source. Lemmas 1 and 2 conclude the

optimal dispatch policy: in every period, all of the inflexible capacity is dispatched, followed by the

renewable source, and then by the flexible source.

We next use this optimal dispatch policy to characterize the optimal capacity portfolio. Our

analysis involves constructing the dual of the dispatch problem in (3)–(5) such that λ∗i (k, ξ, θ) de-

notes the optimal dual variable associated with the capacity constraint related to source i ∈ {I,R, F}.

We present this dual problem in the proof of Proposition 1, where each dual variable represents

the shadow price of the associated capacity constraint.

Lemma 2 is obtained by solving the dispatch problem based on the realizations of demand and
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Table 1: Shadow Prices of Capacity Constraints for Demand and Intermittency Space Partitions

Partition for (ξ, θ) ∈ R+ × [0, 1] λ∗I (k, ξ, θ) λ∗R (k, ξ, θ) λ∗F (k, ξ, θ)

Ω1 (k) = {(ξ, θ)|ξ ≤ kI + θkR} 0 0 0
Ω2 (k) = {(ξ, θ)|kI+θkR < ξ ≤ kI+θkR+kF } cF θcF 0
Ω3 (k) = {(ξ, θ)|kI + θkR + kF < ξ} r θr r − cF

supply uncertainty. There are three regions of the uncertainty space in each of which the optimal

dispatch decision as well as the dual variables have the same structure. We present these regions in

Table 1. For example, in Ω1, ξ and θ are such that ξ ≤ kI + θkR, i.e., the demand is less than the

sum of the inflexible and available renewable capacity. Then, it is optimal to set qR = (ξ − kI)+

and qF = 0, as also indicated by Lemma 2. Furthermore, in this case, no capacity constraint

is binding so that all dual variables are zero. The uncertainty regions are identical across all N

periods, but the probability that a pair of (ξ, θ) falls into a specific region in each period depends on

the (non-identical) joint distribution of (Ξn,Θn). In addition, because Π̄(k) is convex, the Karush–

Kuhn–Tucker (KKT) conditions are necessary and sufficient for the investment problem given in (6).

Moreover, we can show that∇kE[C(k,Ξn,Θn)] = −E[λ(k,Ξn,Θn)] for all n. That is, the derivative

and the expected value can be interchanged, where the expected value of the dual variables can be

easily computed by using Table 1. With these observations, in Proposition 1, we present the KKT

conditions of the investment problem given in (6), where v is the vector of Lagrange multipliers of

the nonnegativity constraints. Here, Pn(Ωj) is the probability that for (Ξn,Θn), ξ and θ are in Ωj ,

where Ωj is defined in Table 1 such that Pn (Ω1 ∪ Ω2 ∪ Ω3) = 1.

Proposition 1. Consider the problem given in (3)–(6). An investment vector k∗ ∈ R3
+ is optimal

if and only if there exists a v ∈ R3
+ such that

N∑
n=1

E


cF

ΘncF

0

∣∣∣∣∣∣∣∣∣∣
Ω2 (k∗)

Pn (Ω2 (k∗)) + E


r

Θnr

r − cF

∣∣∣∣∣∣∣∣∣∣
Ω3 (k∗)

Pn (Ω3 (k∗))

 =


αI + cIN − vI

αR − vR
αF − vF

 .

(7)

∀i ∈ {I,R, F} : kivi = 0. (8)

Equation (7) is obtained by taking the partial derivative of the Lagrangian function with respect

to kI , kR, and kF , respectively. The expectations in (7) are taken with respect to the joint distri-
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bution of the demand and intermittency uncertainties. Based on these KKT conditions, there are

a total of eight cases that we should consider in order to find the optimal investment levels. These

eight cases form four investment strategies: (i) no investments (i.e., k∗ = 0), (ii) single sourcing

(three cases, e.g., k∗I > 0 and k∗R = k∗F = 0), (iii) dual sourcing (three cases, e.g., k∗I , k
∗
R > 0 and

k∗F = 0), and (iv) triple sourcing (i.e., k∗ > 0). No investments strategy is optimal if rN < αi+ciN

for i ∈ {I, F}, and r
∑N

n=1E[Θn] < αR, i.e., if the investment and generation costs are higher than

the penalty cost. Unfortunately, we are not able to analytically characterize the range of cost

parameters that ensures the optimality of the rest of the investment strategies due to the non-

stationarity in demand and supply uncertainty. Nevertheless, based on the estimates of the cost

parameters and the data of Texas, we observe that the triple sourcing strategy is optimal. This

is consistent with the practice that utility firms jointly invest in inflexible, renewable, and flexible

sources (FERC 2015a). Motivated by these facts, in the subsequent discussion, we focus on the

triple sourcing strategy, as this is the most interesting and relevant case. We also investigate the

other strategies in Section 7.5.

Proposition 1 provides a method to find the optimal investment levels for the triple sourcing

investment strategy. The idea is to solve three newsvendor problems simultaneously with v = 0

in (7), each corresponding to one energy source. Specifically, for the inflexible source, the underage

cost includes the expectation of two events associated with the demand exceeding the capacity of

this source. In the first case, the capacity of the flexible source is sufficient to meet the remaining

demand. In the second, the total demand may exceed the entire capacity, and a penalty cost r

is incurred in addition to the generation cost of the flexible source. Hence, the underage cost for

the inflexible source is the probability weighted sum of these two costs. The overage cost for the

inflexible source, on the other hand, is the investment and the generation cost. Note that we include

the generation cost of the inflexible source in the overage cost because the entire capacity of this

source is dispatched at every period even if its capacity exceeds the demand.

For the renewable source, the underage cost is similar to the inflexible source. However, supply

uncertainty Θn is also considered while computing the expectation. The overage cost only includes

the investment cost but not the variable generation cost for two reasons. First, we assume that

the variable cost is zero for the renewable source. Second, even in the absence of this assumption,

the utility firm would not dispatch the renewable source if its capacity exceeds the demand, so the
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variable generation cost should not be included in the overage cost.

For the flexible source, the underage cost only involves the event of demand exceeding the total

capacity. In this case, the penalty cost is incurred and the underage cost is given as (r−αF − cF ).

Note that we deduct the investment and generation cost from the penalty cost, i.e., as in the

classical newsvendor model, we consider the net underage cost. The overage cost for the flexible

source is only the capacity cost, αF .

In summary, the optimality condition suggests that there is a pair of underage cost and overage

cost that determines the optimal investment level for each energy source. The utility firm balances

the underage and overage costs of inflexible, renewable, and flexible sources for demand and supply

realizations, as shown in Figure 3, where we assume that kF > kR for illustration purposes. The

thick line in the figure represents the maximum demand that the firm is able to serve. By adjusting

its investments, the utility firm determines the probability of each region so that the underage cost

is balanced with the overage cost for each energy source.

Θn

1

Ξn
kI kI + kR kI + kF kI + kR + kF

qFqRqI

Ω1(k) Ω2(k) Ω3(k)

Figure 3: Partitions of Demand and Intermittency Space

Next, we consider the relationship between the investments and the reliability of the electricity

grid. In the energy economics literature, reliability is defined based on the loss-of-load probability

(LOLP), i.e., the probability that the demand exceeds the supply of electricity (Telson 1975). This

definition is similar to the concept of service level in the supply chain management literature. We

note that LOLP is not the same as the probability of a blackout because the utility firm may procure

electricity from an external source to avoid a blackout. Let ρ∗ denote the LOLP corresponding to

the optimal investment levels:

ρ∗ =
N∑
n=1

Pn(Ω3(k∗)), (9)

where Ω3(k∗) is the demand and intermittency region in which the demand exceeds the available

supply.
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Corollary 1. ρ∗ = αF /(r − cF ), where ρ∗ is defined in (9).

In the triple source strategy (i.e., k∗ > 0), Corollary 1 immediately follows from the third

dimension of the optimality condition (i.e., with respect to kF ) given in (7) in Proposition 1. It

suggests that the reliability of the electricity grid is only affected by the penalty cost rate r and the

cost parameters of the flexible source in the triple source strategy. That is, the newsvendor critical

fractile of the flexible source determines the service level. Intuitively, the flexible source is the last

option for the utility firm to satisfy the demand, and the firm finds the optimal investment level

in this source by comparing the penalty cost of not satisfying the demand against the investment

cost. This result is an extension of similar observations made in the energy economics (c.f., Chao

1983) and dual sourcing literature (c.f., Sting and Huchzermeier 2012) to our setting.

Corollary 1 suggests an important policy insight. Because subsidies for the renewable or inflex-

ible source do not affect r, cF , or αF , these subsidies do not change the reliability of the grid. This

result provides a different perspective from the claims that renewable energy subsidies undermine

reliability, and nuclear subsidies enhance reliability (c.f., Gronewold 2011, Garman and Thernstrom

2013, Karnitschnig 2014, Fisher 2015, and Smith 2015). This is because our model optimizes in-

vestments in all energy sources simultaneously and can identify the effect of subsidies on the entire

capacity portfolio rather than consider the effect on a single source.

5 Interaction Between Energy Sources

In this section, we investigate how providing a subsidy for one energy source affects the investment

level of other energy sources. Two consumption goods are substitutes if a decrease in the price

of one good leads to a lower level of consumption in the other (Singh and Vives 1984). From the

utility firm’s perspective, energy sources are consumption goods, and their price is the investment

cost. Hence, we define two energy sources as substitutes if a decrease in one’s investment cost

leads to a decrease in the other’s investment level. That is, sources i and j are substitutes if a

decrease in αi leads to a decrease in k∗j (i.e., dk∗j /dαi > 0) and vice-versa (i.e., dk∗i /dαj > 0).

Analogously, we define two sources as complements if a decrease in one’s investment cost leads to

an increase in the other’s investment. We refer to the decrease in investment cost as an investment

subsidy. In practice, this decrease is not limited to the subsidies provided by the government but
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can also represent a technological improvement that reduces the investment cost. For example,

a new technology has reduced investment cost for coal-fired power plants (Duke Energy 2015b),

which can be considered as a decrease in αI . We first present a preliminary result before identifying

the interactions between energy sources (i.e., how a subsidy for one source affects investment in

others).

Proposition 2. For i, j ∈ {I,R, F}, (i)
dk∗i
dαi
≤ 0, (ii)

dk∗i
dαj

=
dk∗j
dαi

.

Proposition 2(i) shows that providing a subsidy for an energy source leads to a higher investment

level in that source. Intuitively, the subsidy leads to a lower investment cost; in response, the utility

firm increases its investment. Part (ii) shows that the cross effect of a subsidy is symmetric: the

change in the investment level for source i in response to a change in the investment cost of source

j is equivalent to that for source j in response to a change in the investment cost of source i.

To examine the interactions between energy sources, we make the following assumption. Define

g (ξ, θ) =

N∑
n=1

f(Ξn,Θn) (ξ, θ) (10)

as the sum of the joint density function of demand and intermittency distributions over N periods.

Assumption 1. (i) g (ξ, θ) defined in (10) is log-concave in ξ for any θ. (ii) g(ξ,θ2)
g(ξ,θ1) is decreasing

in ξ for any θ2 ≥ θ1.

Below, we discuss the implications of this assumption for wind and solar energy separately

because they have different generation patterns.

Wind Energy

To test the practicality of Assumption 1, we evaluate the g(ξ, θ) function by using the realized

electricity demand and wind energy intermittency data between the years of 2016 and 2018 in the

Southwest Power Pool (SPP). As we explain in detail in Appendix A, we fit a serially correlated

and nonstationary process to the data and estimate its parameters. The process consists of trend,

seasonality, and a noise component that follows a vector autoregressive (VAR) model of order 1.

By using the estimates, we characterize f(Ξn,Θn) (ξ, θ) for all n as a nonstationary bivariate normal

distribution (Huang and Schneider 2011) and evaluate the g(ξ, θ) function.
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In Figure 4a, we plot log g(ξ, θ) for four different θ values and observe that it is concave,

consistent with Assumption 1(i). This condition holds if each density function is log-concave and

sufficiently similar (i.e., stationary) because log-concavity is preserved under multiplication by

a constant. We note that many commonly used distributions, including Normal, Logistic, and

Extreme Value, have log-concave density functions (Bagnoli and Bergstrom 2005). Assumption 1(ii)

is related to the decreasing likelihood ratio property. Intuitively, this condition is satisfied if the

electricity demand and the intermittency are negatively correlated. This is the case for wind

energy. As shown in Figure 4b, g(ξ,θ2)
g(ξ,θ1) is decreasing in ξ in three cases where θ2 ≥ θ1, consistent

with Assumption 1(ii). Hence, Assumption 1 is satisfied by the real electricity demand and wind

energy supply data of the SPP. We use this assumption as a sufficient condition in presenting our

main results below.
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Figure 4: Practicality of Assumption 1 in the Southwest Power Pool

Proposition 3. (i) The inflexible and renewable sources are substitutes. If Assumption 1 holds,

then (ii) the inflexible and flexible sources are substitutes, and (iii) the renewable and flexible sources

are complements.

Proposition 3(i) and (ii) indicate that a subsidy for the inflexible source leads to a lower invest-

ment level in the renewable and flexible sources. However, Proposition 3(iii) shows that a subsidy

for the flexible source leads to a higher investment in the renewable source. This is a new insight

compared to the dual sourcing literature, which suggests that the two sources considered in a dual

sourcing case are substitutes. We explain the intuition behind these results based on the subsidy
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for the flexible source. By considering other subsidies, we can obtain similar insights because the

cross effects of the subsidies are equivalent by Proposition 2.

The flexible source subsidy leads to an increase in the investment level of the flexible source,

which alleviates the intermittency problem of wind energy. This intermittency alleviation effect,

in turn, encourages the utility firm to invest more in wind energy in order to take advantage of

its negligible generation cost. Consequently, the increased investment in both wind energy and the

flexible source lowers the investment level of the inflexible source. We illustrate these results in

Figure 5a based on real data from the state of Texas (see Section 6). As shown in the figure, when

the flexible source subsidy increases (i.e., αF decreases), the investment levels of both renewable

and flexible sources increase, but the investment level of the inflexible source decreases.

We next discuss the role of Assumption 1 on the substitution and complementarity effects. First,

the log-concavity condition in Assumption 1(i) intuitively means that the demand distribution has

sub-exponential tails (i.e., light-tailed) for any given level of intermittency (An 1998). If this

condition is violated, the complementarity effect between the flexible and the renewable source

may not hold. This is because if the demand distribution is heavy-tailed, it becomes likely that the

demand takes arbitrarily high values, which can only be satisfied by the flexible source (because the

renewable source is intermittent). Hence, in response to a subsidy for the flexible source, the utility

firm may increase the investment in the flexible source significantly and reduce the investment

of the intermittent renewable source. Second, recall that Assumption 1(ii) requires a negative

correlation between the electricity demand and the renewable energy supply. The substitution

and complementarity effects are stronger if the correlation is negative, as in the case of wind

energy. To see the intuition, consider a specific five-minute interval to avoid the complication of

the nonstationarity in demand and intermittency. In this interval, if the demand level is low, the

optimal dispatch policy suggests that the demand is mostly satisfied by the inflexible source. When

the demand level is low at nighttime, due to the negative correlation, the wind output tends to

be higher, reducing the need for the inflexible source. Hence, the substitution effect is stronger

between wind energy and the inflexible source. Under a negative correlation, the complementarity

effect between wind energy and the flexible source is also stronger. This is because the flexible

source is used more when the demand level is high. When the demand is high during the daytime,

wind output tends to be low, increasing the need for the flexible source and strengthening the
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complementarity effect.

Solar Energy

Proposition 3 requires Assumption 1 as a sufficient condition. Recall that Assumption 1(ii) stip-

ulates that the electricity demand and the renewable energy supply are negatively correlated.5

For solar energy, the correlation between the supply and demand may be positive, as higher solar

output correlates with warmer weather, which may increase electricity usage. This is, in fact, the

case in the state of Texas, where the correlation coefficient is 0.36. As explained above, the posi-

tive correlation weakens the complementarity effect between flexible and renewable energy sources.

Consequently, we are unable to establish analytical results for solar energy.
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Figure 5: Effect of a Subsidy for the Flexible Source

To analyze whether the results of Proposition 3 hold for solar energy, we present another

numerical study in Figure 5b based on real data from Texas, where solar energy and demand are

positively correlated. Although solar energy and the flexible source remain to be complements

for most problem parameters, they are no longer complements if the subsidy level for the flexible

source is low (i.e., αF is high). This interesting result illustrates the complexity of identifying the

interaction between energy sources. Specifically, the positive correlation between the demand and

solar energy weakens the complementarity between solar energy and the flexible source. In fact,

5Assumption 1(ii) may be satisfied by the solar energy investment of a utility firm if the utility firm operates in a
region with a significant penetration of household solar panels. In these regions, such as California, the utility firm
satisfies the net customer demand, i.e., demand minus the generation from household panels. The net demand and
the solar energy investment of the utility firm may exhibit a negative correlation; hence, all of the above results given
for wind energy continue to apply. That is, the solar energy investment of the utility firm is complemented by the
flexible source.
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the complementarity effect is reversed if αF is between 55 and 65 $/kW in Figure 5b. This is

because the solar energy output tends to be higher in the daytime when the demand level is also

high, and the flexible source is mostly used to satisfy the demand. As a result, as the investment in

the flexible source increases (due to the subsidy), the need for solar energy decreases, making the

two sources substitutes. We further observe that as the subsidy level increases (i.e., αF decreases),

the investments in both the flexible source and solar energy increase, indicating that these sources

become complements. That is, the intermittency alleviation effect outweighs the effect of the

positive correlation if the subsidy level in the flexible source is sufficiently high.

6 Case Study: Texas Data

We next validate our main insights by using real electricity generation and demand data from the

state of Texas. In our analytical model, given in (3)–(6), we assume that between consecutive

periods, the output of a flexible source can be changed instantaneously and the output of an

inflexible source cannot be changed at all. However, in practice, operational flexibility depends on

plant-level characteristics. For example, there is a limit on how fast the output of a flexible source

can be ramped up. In this case study, by considering these characteristics, we validate our results

on the complementarity and substitution effects between energy sources.

Table 2: Sample Plant Characteristics for Texas, 2010

Plant Name Plant Type
Minimum
Output
(MW)

Minimum
Downtime

(hr)

Startup
Cost ($)

Ramp Up
Limit

(%/min)

South Texas Project Nuclear 812 168 15,000 1

Morgan Creek
Open-Cycle
Natural Gas

122 0.5 1,203 10

Table 2 illustrates generation characteristics that determine operational flexibility for a repre-

sentative nuclear and natural gas power plant in Texas (Cohen 2012). Here, the minimum output,

minimum downtime, and startup cost (i.e., the cost of extra fuel to start the plant after it has

been shut down) are all greater for the nuclear power plant than those for the natural gas plant.

Furthermore, a utility firm can increase the output of the natural gas plant by 10% of its capacity

every minute, but the nuclear plant can only be ramped at a rate of 1% of its capacity. In practice,
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a utility firm considers these salient features and determines the least costly way of satisfying the

electricity demand with its available set of generators. In doing so, the firm uses a unit commit-

ment and dispatch model (UCDM), a mixed integer program that minimizes the generation cost

subject to electricity system constraints, such as capacity limits, ramp up/down constraints, and

minimum up/down times. We use Cohen (2012)’s dispatch model that mimics the operations in

Texas electricity system to determine how providing a subsidy for one source affects the investment

in other sources.

Next, we describe the data used in the UCDM. As an input, the UCDM uses the demand data

and generation characteristics of available power plants. We use the observed 15-minute demand

data from the state of Texas in 2010. For the generation mix (available set of power plants), we use

the same data sources as in Kök et al. (2018). That is, we utilize the rich dataset given in Cohen

(2012) that reports various generation characteristics, including those related to the operational

flexibility of the 144 conventional power plants in Texas. Furthermore, for wind energy, we use the

15-minute output data which is also provided by Cohen (2012). For the solar energy output, because

solar capacity was negligible in Texas in 2010, we rely on the simulation study of Kök et al. (2018).

We now turn to our analysis to identify the interaction between energy sources. We first de-

termine the optimal capacity investment in inflexible, renewable, and flexible sources in Texas

electricity system for current estimates of investment costs. Then, to investigate how optimal

investment levels change, we decrease the investment cost of each source sequentially, which corre-

sponds to providing a subsidy for each source. Specifically, the utility firm minimizes its generation

and investment cost by determining its investment level in the three energy sources:

min
kI ,kR,kF

Π̄(kI , kR, kF ) = αIkI + αRkR + αFkF +G(kI , kR, kF ), (11)

where the first three terms are the investment costs, and G(kI , kR, kF ) is the output of the UCDM

given inflexible, renewable, and flexible source investments of kI , kR, and kF , respectively. In

essence, we use the UCDM instead of the second stage problem of the analytical model in (3)–(6).

To determine the optimal investment levels, we next evaluate G(kI , kR, kF ) at various kI , kR,

and kF levels, considering wind or solar energy as the renewable source. Each evaluation takes 1.2

CPU hours on average; hence, we only consider a limited set of investment levels. In particular, we

take the current level of investment in energy sources as a basis and evaluate G(kI , kR, kF ) at current
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investment levels, as well as when additional investments are made. We consider nuclear energy as

the inflexible source and natural gas-fired steam boilers as the flexible source. We allow additional

investments of {0, 1000, 3000, 5000} MW for both conventional sources. For the renewable source,

we consider additional investments of {0, 5000, 10000, 15000, 20000} MW. We consider a maximum

investment level of 20,000 MW for the renewable source to ensure that the expected output from

the renewable and conventional sources is similar. For example, wind source is intermittent with a

capacity factor of approximately 0.3, meaning that the effective capacity is 6, 000 = (20, 000× 0.3)

MW for wind energy.

In summary, we enumerate G(kI , kR, kF ) for 160 cases: 4 levels of nuclear investments by 4 levels

of natural gas investments by 5 levels of renewable investments by 2 different renewable sources.

Among these cases, under current cost estimates and for a given renewable source, we identify the

optimal investments by selecting the case with the lowest cost. Then, we separately provide a 50%

subsidy for each conventional source and compare the new investment levels against the original

investments. We report our main findings in Figure 6 (see Appendix C for details).
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(b) Solar Energy Results

Figure 6: Effect of Subsidies

Figure 6 plots the change in the optimal investment levels, compared with the original invest-

ments, when a subsidy is provided for a conventional source. For the renewable sources, we report

the effective investment level that accounts for the intermittency of wind and solar energy by mul-

tiplying its optimal investment level with its capacity factor as described above. In Figure 6a, we

consider wind energy as the renewable source. In the left panel of this figure, we observe that pro-

viding a subsidy for the nuclear energy source leads to an increase in the capacity of that source and
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a decrease in the capacity of wind and flexible sources. In the right panel in Figure 6a, we observe

that a subsidy for the natural gas results in a lower investment in the inflexible source, but invest-

ments in other sources increase. Figure 6b presents similar results when solar energy is considered

as the renewable source. These results validate Proposition 3 because the same complementarity

and substitution effects are found between energy sources.

To sum, in this case study, we use a practical dispatch model to refine our definition of oper-

ational flexibility. We observe that our insights continue to hold. That is, renewable and flexible

sources are complements, whereas renewable and inflexible sources are substitutes in a realistic

setting that is not subject to the limitations of our analytical model.

7 Discussion of Modeling Assumptions

7.1 Spot Market

In our main model given in (3)–(6), we consider a vertically integrated utility firm that does not

participate in a spot market to buy or sell electricity. In practice, more than half of U.S. utility

firms use spot markets, such as the real-time Energy Imbalance Market in the SPP (EIA 2011a).

In this section, we consider the effect of a spot market on the capacity investments of a utility firm.

In an electricity market, a utility firm can procure electricity either from its own generation

sources (self-schedule) or from other suppliers through bilateral contracts and spot markets (FERC

2015b, p. 62). The most common way for a utility firm to procure electricity is self-schedule.

For example, in the largest electricity market of the U.S. (PJM Interconnect), utility firms have

generated more than 60% of their electricity from their own sources in 2014 (Monitoring Analytics

2015, p. 97). The remaining electricity can be purchased from a spot market in which the price

varies stochastically. Furthermore, this market, such as the one in PJM, has a relatively low volume

so that the price might be affected by the amount of electricity traded. Considering these factors,

we assume that the utility firm faces the following price in the spot market:

pnS (Γ, qS) = Γ +
bn
2
qS , (12)

where Γ is a random variable representing price uncertainty, qS is the amount of electricity bought

by the utility firm, and bn > 0 is the price responsiveness parameter in period n. We note that qS is
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negative if the utility firm sells electricity in the market, which causes the market price to decrease.

On the other hand, if the utility firm buys electricity from the market, qS is positive, which causes

the market price to increase. We note that our results hold for any positive bn, that is, our results

are robust to the magnitude of the effect of the utility firm on the market price. Similar models for

spot markets are considered in the literature (c.f., Mart́ınez-de-Albéniz and Simchi-Levi 2005).

In the presence of the spot market, we modify the second stage of the utility firm’s problem as

Cn (k, ξ, θ, γ) = min
qR,qF≥0,qS∈R

cF qF + pnS (γ, qS) qS (13)

subject to qR ≤ θkR (14)

qF ≤ kF (15)

qS = ξ − kI − qR − qF . (16)

Following Lemma 1 that it is optimal for the utility firm to dispatch the entire inflexible capacity

at every period, the utility firm minimizes its generation and market transaction cost based on the

dispatch levels of the renewable and flexible sources, as well as the quantity traded in the spot

market (qS). In this stage, the utility firm observes the forecast of Γ as γ. Furthermore, qS is

defined in (16) as the difference between the demand level and the dispatched electricity from the

utility firm’s own investments. Recall that qS is negative if the firm sells electricity in the market.

In this case, the second term in (13), i.e., pnS (γ, qS) qS , is also negative, indicating a decrease in the

cost for the utility firm. On the other hand, if qS is positive, the utility firm buys electricity from

the market, and the second term in (13) is positive, indicating an increase in the cost for the utility

firm. With this per period cost, the first stage problem is

min
k∈R3

+

Π̄ (k) = (αI + cIN) kI + αRkR + αFkF + E

[
N∑
n=1

Cn (k,Ξn,Θn,Γn)

]
. (17)

We next derive the optimal dispatch policy. In this case, in addition to supply and demand

uncertainties, we also consider a spot price uncertainty, which complicates our analysis considerably.

Lemma 3. Consider the dispatch problem given in (13)–(16). (i) The optimal dispatch policy is to

set q∗R (k, ξ, θ, γ) = min
(
θkR, ξ − kI + γ

bn

)+
and q∗F (k, ξ, θ, γ) = min

(
kF , ξ − kI − θkR + γ−cF

bn

)+
.

(ii) The first stage problem given in (17) is convex in k.

Lemma 3 is the extension of Lemma 2 to the spot market setting. In this case, in addition
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to the demand and intermittency forecasts, the optimal dispatch levels also depend on the market

price forecast. If the forecast of the market price is too low (γ is small), neither the renewable

nor the flexible source is dispatched. That is, unlike the main model, the utility firm might find it

optimal not to use all the renewable energy capacity in all periods. As the market price becomes

higher, the renewable source, followed by the flexible source, is dispatched. We also note that the

dispatch level of the inflexible source is equal to its capacity as in the main model.6

Next, we present our main result that identifies the interactions between energy sources in the

spot market setting. We continue to consider the interior solution case (i.e., k∗ > 0). To identify

the interactions, we use the following assumption as a sufficient condition.

Assumption 2. (i) The utility firm dispatches all of its available renewable energy in each period,

i.e., q∗R = ΘnkR. (ii) Demand, intermittency, and market price uncertainties are independent of

one another. (iii) Demand distribution Ξn is bounded above by a constant κn. (iv) Intermittency

uncertainty Θn follows a stationary Bernoulli distribution, where Θn = 1 with probability q, and

Θn = 0 with probability 1 − q. (v) Market price uncertainty Γn follows a uniform distribution

between Ln and Un such that Ln ≤ −bnκn.

Assumption 2(i) ignores the possibility that the utility firm does not use (i.e., curtails) its

renewable source. This is a good approximation of the practice because curtailment as a fraction

of wind capacity is less than 4% in the U.S. in 2014 (Bird et al. 2014). The second part of the

assumption is mainly required to establish the complementarity result between the renewable and

flexible sources. In the absence of this assumption, we numerically observe that our results still hold.

Assumption 2(iii) bounds the demand distribution from above. This is not very restrictive because

such a distribution can be closely approximated by an unbounded random variable (e.g. Normal) as

long as κn is large enough compared to the variance (Petruzzi and Dada 1999). Assumption 2(iv)

imposes a Bernoulli intermittency distribution. This is a sufficient (but not necessary) condition,

and it is commonly used in the literature for the intermittency of renewables (c.f., Aflaki and

Netessine 2017, Baranes et al. 2017, and Kök et al. 2018). The last part of the assumption suggests

that the market price follows a nonstationary uniform distribution, and it can be negative. Note

6Based on this optimal dispatch policy, optimal investment levels can be characterized similar to the multi-
dimensional newsvendor solution in the main model. In addition, the cross effects of subsidies are equivalent, i.e.,
dk∗i
dαj

=
dk∗j
dαi

, ∀i, j ∈ {I, R, F}. The proofs of these results are available from the authors.
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that negative prices are observed in practice (c.f. Zhou et al. 2015).

Proposition 4. (i) The inflexible and renewable sources are substitutes. If Assumption 2 holds,

then (ii) the inflexible and flexible sources are substitutes, and (iii) the renewable and flexible sources

are complements.

Proposition 4 shows that our main insight also holds when a spot market is considered under

certain sufficient conditions. That is, the relationship between a renewable and a conventional

source is determined by operational flexibility. If the conventional source is inflexible, it substitutes

the renewable source; otherwise, it complements the renewable source.

7.2 Oversupply Penalty

In our model, the utility firm incurs an explicit penalty cost in the case of undersupply, i.e., if

the electricity demand exceeds the electricity supply. In this subsection, we extend our model

by considering an explicit oversupply penalty cost due to technical issues, such as transmission

congestion (Bird et al. 2014, p. 1). Another reason for the oversupply penalty is the cost of

reducing the output of conventional sources (leading to cycling costs, see Bird et al. 2014, p. 13).

We observe that our main conclusion on the substitution and complementarity effects continues to

hold under an explicit oversupply penalty.

To model oversupply penalty, we modify the second stage dispatch problem as

C (k, ξ, θ) = min
0≤qR≤θkR,0≤qF≤kF

cF qF + ru (ξ − kI − qR − qF )+ + ro (kI + qR + qF − ξ)+ , (18)

where ru and ro denote the undersupply and the oversupply penalty rate, respectively. In this case,

the optimal dispatch policy is the same as that of the main model: all the inflexible capacity is

dispatched at each period, and the renewable source is used before the flexible source. Under the

optimal dispatch policy, given in Appendix D, the oversupply penalty only occurs if the demand

level is less than the capacity of the inflexible source. This is because the utility firm dispatches the

renewable and flexible sources based on the five-minute-ahead demand and intermittency forecasts,

which are assumed to be accurate as in Wu and Kapuscinski (2013). Hence, in the optimal dispatch

policy, the renewable and flexible sources never cause an oversupply penalty. Based on the optimal

dispatch policy, we characterize the optimal capacity portfolio in Appendix D as a multidimensional
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newsvendor solution.

Proposition 5. An increase in the oversupply penalty rate ro leads to a lower investment level in

the inflexible source. If Assumption 1 holds, then an increase in ro leads to a higher investment

level in the renewable and flexible sources.

Proposition 5 suggests that an increase in the oversupply penalty leads to a lower investment in

the inflexible source but a higher investment in the other sources. This is because only the inflexible

source incurs the oversupply penalty in the optimal capacity portfolio, as explained above. We next

investigate the relationship between energy sources under the oversupply penalty.

Proposition 6. (i) The inflexible and renewable sources are substitutes. If Assumption 1 holds

in the strict sense, then (ii) the inflexible and flexible sources are substitutes, and (iii) there exists

r̄ > 0 such that if ro ≤ r̄, then the renewable and flexible sources are complements.

Proposition 6(i) shows that the inflexible and renewable sources remain to be substitutes under

an oversupply penalty. The inflexible and flexible sources are also substitutes if Assumption 1 holds

in the strict sense, i.e., g(ξ, θ), defined in (10), is strictly log-concave in ξ for any θ, and g(ξ,θ2)
g(ξ,θ1)

is strictly decreasing in ξ for any θ2 ≥ θ1. Moreover, this assumption is satisfied by wind energy

(see Figure 4), and the complementarity effect between the flexible source and wind energy holds

if the oversupply penalty rate is sufficiently low, i.e., ro ≤ r̄. We cannot analytically characterize r̄;

however, in numerical studies, we observe that r̄ is approximately $200 per kWh. In practice, ro is

capped at $5 per kWh in Texas (Cohen 2012, p. 184), indicating that ro is well below r̄ so that the

complementarity result holds. To illustrate our findings, we present a numerical study in Figure 7a

based on the Texas data. We observe that the same complementarity and substitution effects hold

as in the case without an oversupply penalty (see Figure 5a) for wind energy.

In the case of solar energy, Assumption 1 is not satisfied; hence, we present a numerical study in

Figure 7b. We observe that the range of αF values for which solar energy and the flexible source are

substitutes is expanded compared to Figure 5b (where ro = 0). Nevertheless, our main conclusion

for solar energy continues to hold under the oversupply penalty: solar energy and the flexible source

are complements as long as the subsidy level is high for the flexible source (i.e., αF is low).
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Figure 7: Effect of a Subsidy for the Flexible Source

7.3 Effects of Carbon Tax Policy

To increase investment in renewable sources, 45 countries have adopted policies that penalize carbon

emissions (World Bank 2018, p. 17). One such policy is carbon tax. In this subsection, we

investigate how the carbon tax policy affects investment in energy sources. Specifically, we present

an extension of our model by considering a tax level given as t. Let the emission intensity of a

source be ei for i ∈ {I, F}. Here, eR = 0 because a renewable source (e.g., wind) does not produce

emissions. Under the carbon tax, the generation cost of the flexible and inflexible sources become

cF + teF and cI + teI in (3) and (6), respectively.

We can characterize the optimal capacity portfolio (similar to Proposition 1) under the carbon

tax. However, we are not able to analytically establish the effect of the tax on the optimal investment

levels, i.e., dk∗i /dt for each i ∈ {I,R, F}, for a general demand and intermittency distribution. Thus,

to study carbon tax, we resort to a numerical analysis calibrated by the Texas data.

Figure 8 illustrates the effect of carbon tax t on the energy investments for two different inflexible

sources. First, in Figure 8a, we consider that the inflexible source is carbon-free nuclear energy

(eI = 0), which is not affected by the carbon tax. The tax increases the cost of generating electricity

from the flexible source because eF > 0. As a result, the optimal investment in the flexible source

decreases, which leads to a lower renewable energy investment due to the complementarity effect.

Second, in Figure 8b, we consider coal power as the inflexible source. In this case, eI > eF , and

the carbon tax leads to a higher investment in the flexible and renewable sources. Therefore, the

previous claims that carbon tax leads to a higher renewable energy investment only holds if the
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Figure 8: Effect of Carbon Tax on the Optimal Investment Levels for Different Inflexible Sources

inflexible source is more carbon-intensive than the flexible source. On the other hand, carbon tax

leads to a lower investment in renewable energy if the inflexible source is carbon-free (e.g., nuclear),

but the flexible source is carbon-intensive (e.g., natural gas).

We next validate the insights on the effects of carbon tax policy by using the case study presented

in Section 6. Specifically, we impose a carbon tax of $10 per ton of CO2 in the unit commitment

and dispatch model (UCDM) and, by following similar steps as in Section 6, we find the optimal

investment levels. We then compare the investment levels under the tax to the original investments

without the tax. We note that our findings are robust to the carbon tax level.
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Figure 9: Effect of Carbon Tax

Figure 9 plots the change in the optimal investment levels when a carbon tax is imposed. On

the left panel, we consider wind energy as the renewable source; on the right panel, solar energy

is the renewable source. In both cases, the inflexible source is carbon-free nuclear energy, whereas

the flexible source is carbon-emitting natural gas. Figure 9 shows that the carbon tax leads to a
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lower renewable energy investment, validating the results of the analytical model (see Figure 8).

7.4 Energy Efficiency and Demand Response

Our model considers capacity investment in energy sources, which is related to managing the supply

side of energy systems. Some of the incentives that reduce demand, such as Energy Efficiency (EE)

and Demand Response (DR), can be incorporated into the current model. Specifically, EE refers

to the incentives that a utility firm provides to its customers so that these customers reduce their

total electricity demand by using more efficient devices. For example, Duke Energy, through its

Appliance Recycling Program, offers a rebate to those who want to replace their old refrigerators

with more efficient ones (Duke Energy 2015a). DR, on the other hand, aims to reduce the demand

only during peak demand periods. For instance, MidWest Energy compensates farmers who curtail

the usage of water pumps upon a service call during high-demand hours (Midwest Energy 2015).

From the perspective of a utility firm, EE and DR are equivalent to the inflexible and flexible

sources, respectively. Specifically, the rebate paid to customers under EE corresponds to the in-

vestment cost of the inflexible source, and the curtailment payments made under DR correspond

to the generation cost of the flexible source. Furthermore, similar to nuclear power, EE is used

to reduce the baseload demand, whereas, similar to natural gas, DR is used to reduce demand at

high-demand periods. In terms of cost, the rebates given under EE are one-time payments similar

to the investment cost of the inflexible source. In contrast, DR involves a low initial cost but high

recurring curtailment payments similar to the high generation cost of the flexible source. Finally,

similar to the flexible source, DR contracts are capable of curtailing the demand within seconds

because they involve automated response (DOE 2011). Thus, our model indicates that EE and

renewable energy investment are substitutes, whereas DR and renewable investment are comple-

ments. As the share of renewables increases, the need for and the importance of DR will increase,

as well.

7.5 Dual Sourcing

Throughout the paper, we assume that the triple sourcing strategy is optimal, i.e., k∗ > 0. In some

cost parameters, a dual sourcing strategy may be optimal (e.g., k∗I , k
∗
R > 0 and k∗F = 0). In any

dual sourcing case, the two sources included in the optimal portfolio are substitutes. The details
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of the proof are available from the authors. We note that this conclusion is the same as that of the

dual sourcing literature (c.f., Sting and Huchzermeier 2012).

8 Conclusion

In this paper, we consider the capacity investments of a utility firm in renewable and conventional

sources with different levels of operational flexibility. We characterize the optimal investment lev-

els and determine the role of operational flexibility in identifying the interaction between energy

sources. Specifically, a renewable and a conventional source are substitutes (complements, respec-

tively) if the conventional source is inflexible (flexible, respectively). We validate this result by

using real electricity generation and demand data from Texas.

This paper has significant policy implications and can provide guidelines for designing policies

to promote renewables. First, we show that from the perspective of a utility firm, the intermittency

problem can be alleviated by flexible energy sources, such as open-cycle natural gas-fired power

plants. Thus, low natural gas prices may promote investment in renewables. Second, policymakers

should refrain from providing a subsidy for an inflexible source (e.g., nuclear or coal power) because

this subsidy leads to a lower investment in renewables. Finally, a carbon tax is only effective in

increasing renewable investment if the inflexible source is carbon-intensive, such as coal power.

Thus, given the high share of nuclear energy as the inflexible source in the U.S., the tax might not

lead to increased renewable investment.
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A Evaluation of g (ξ, θ)

In this section, we introduce a serially correlated process for the demand and intermittency uncer-

tainty. This process consists of three components: trend, seasonality, and a vector autoregressive

noise. Based on this process, we show that the joint distribution of demand and intermittency

(Ξn,Θn) in each period n is a bivariate normal distribution. By estimating the mean and covari-

ance matrix of these distributions, we evaluate the g (ξ, θ) function given in (10).

Let the joint demand and intermittency process be Ξn

Θn

 =

 dΞ,n

dΘ,n

+

 sΞ,n

sΘ,n

+

 Yn

Zn

 , (A.1)

where dΞ,n and sΞ,n denote the trend and the seasonality in demand distribution in period n,

respectively. Similarly, dΘ,n and sΘ,n are the trend and seasonality in intermittency. Furthermore,

{Yn, Zn} follows a vector autoregressive (VAR) model of order 1: Yn

Zn

 = Φ

 Yn−1

Zn−1

+

 wn

zn

 , (A.2)

where Φ =

 φ11 φ12

φ21 φ22

 and {wn, zn} follows a bivariate normal distribution, i.e., {wn, zn} ∼

N


 0

0

 ,Σ
 with Σ =

 σ2
w ρσwσz

ρσwσz σ2
z

. In this case, according to Huang and Schneider

(2011), the stationary distribution of {Yn, Zn} can be shown to be bivariate normal Yn

Zn

 ∼ N

 0

0

 ,
 λ11 λ12

λ21 λ22


 , (A.3)

where Λ =

 λ11 λ12

λ21 λ22

 is the solution of the Lyapunov equation: Λ = ΦΛΦ
′

+ Σ. Hence, the
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joint demand and intermittency distribution is given as Ξn

Θn

 ∼ N

 dΞ,n + sΞ,n

dΘ,n + sΘ,n

 ,
 λ11 λ12

λ21 λ22


 . (A.4)

We estimate each parameter in the above bivariate normal distribution for each period n over a

year. That is, we set N = 104, 832 (five-minute intervals in 364 days). By using the realized

demand and intermittency data from the period of 2016–2018 in the Southwest Power Pool (SPP),

we first estimate the trend components dΞ,n and dΘ,n and the seasonality components sΞ,n and sΘ,n

for all n. After de-trending and de-seasonalizing, the remaining data follows the VAR(1) process

given in (A.3). Hence, we solve the Lyapunov equation to find Λ. This completes the estimation

process for the parameters in (A.4). By using these parameters for each period n, we characterize

f(Ξn,Θn) (·, ·); in return, g (ξ, θ) can be computed for any given ξ and θ.

We finally note that the above estimation procedure is based on an additive trend and seasonality

component. As a result of this additive formulation, the covariance matrix for each (Ξn,Θn) is

constant and given as Λ in (A.4). We have also considered a multiplicative seasonality form and

observed that the covariance matrix becomes time-dependent in this case. Moreover, under this

multiplicative form, Assumption 1 is still reasonable for wind energy.

B Parameter Values in Numerical Examples

In Figure 5, we consider a peak and an off-peak period, i.e., N = 2. We estimate the parameters

of the bivariate demand and supply distributions by using the data from Texas. The average

demand during the peak and off-peak period is 40.84 GW and 32.00 GW, respectively, with a

standard deviation of 10.70 GW and 6.62 GW, respectively. The correlation coefficients between

the demand and supply distributions are 0.57 for wind energy and 0.25 for solar energy during the

peak period and 0.35 for wind energy and 0.18 for solar energy during the off-peak period. Finally,

we use similar cost parameters as in the case study and report the effective investment levels in

renewable sources by accounting for intermittency.

Figure 5a illustrates that without a subsidy for the flexible source (αF = 50), the share of the

inflexible, renewable, and flexible sources in the capacity portfolio is 38%, 6%, and 56%, respectively,

in Texas. These values are similar to the actual shares given respectively as 29%, 10%, and 62%
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(based on the case study data).

In Figure 7, we use the same parameter values as in Figure 5 and ru = ro = $5 per kWh.

Finally, in Figure 8, wind energy is the renewable source, and we continue to let N = 2. We

use eF = 1.21 and eI = 2.07 (for coal) pounds of CO2 per kWh (EIA 2016). Note that compared

to panel (a), we report a limited range of carbon tax t levels in panel (b). This is because for high

t values, coal power becomes uneconomic, and the utility firm does not invest in it.

C Details of the Case Study

To estimate the investment cost parameters, we use the Transparent Cost Database (TCDB, avail-

able at http://en.openei.org/apps/TCDB/), which tracks various publications that estimate cost

figures for power plants. The estimate for the overnight capital cost of wind and solar energy

varies significantly throughout the years. For wind energy, the median estimate is $1.57M per

MW, whereas the most recent one is $1.73M per MW. Based on this data, for wind energy, we set

αR = $1.65M per MW. For solar energy, we let αR = $1M per MW, which is at the lower end of

the estimates. For nuclear source, there is limited data in the TCDB. Thus, we rely on a report

of the Energy Information Administration (EIA 2013) and observe that the overnight capital cost

is $5.53M per MW. Furthermore, we adjust these cost figures based on differences in the economic

life of power plants. For example, we assume that the economic life of a nuclear power plant is

twice that of a wind plant and set αI = $5.53/2 ≈ $3M per MW. Finally, for the open-cycle gas

turbine, we set αF = $50, 000 per MW. This is because, in the TCDB, the cost estimates are as

low as $200, 000 per MW, and gas turbines also have a much longer economic life than renewables.

Table 3: Optimal Investment Levels (MW) in the Case Study

Optimal Wind Energy Solar Energy
Investment

Level
Original

Costs
Nuclear
Subsidy

Natural Gas
Subsidy

Nuclear
Subsidy

Natural Gas
Subsidy

k∗I 3,000 5,000 0 5,000 0
k∗R 5,000 0 10,000 0 10,000
k∗F 1,000 0 5,000 0 3,000

Table 3 reports the optimal investment levels (in addition to the existing fleet) under original costs

and conventional energy subsidies when wind or solar energy is considered as the renewable source.
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Finally, in analyzing the effect of a carbon tax, we set t = $10 per ton of CO2. This figure is

consistent with the average carbon tax level in 2010 prices (see https://www.carbontax.org/where-

carbon-is-taxed/).

D Oversupply Penalty

To characterize the optimal capacity investments under the oversupply penalty case, first recall the

second stage problem given in (18) as

C (k, ξ, θ) = min
0≤qR≤θkR,0≤qF≤kF

cF qF + ru (ξ − kI − qR − qF )+ + ro (kI + qR + qF − ξ)+ .

In this formulation, the optimal dispatch policy identified in Lemma 1 and 2 continues to hold,

i.e., q∗I = kI , q
∗
R (k, ξ, θ) = min (θkR, ξ − kI)+ , and q∗F (k, ξ, θ) = min (kF , ξ − kI − θkR)+ . As in

Section 4, we can construct the dual of this dispatch problem such that λ∗i (k, ξ, θ) denotes the dual

variable of the capacity constraint for source i. Furthermore, we can show that∇kE[C(k,Ξn,Θn)] =

−E[λ(k,Ξn,Θn)] for all n. These expectations should be computed slightly differently under the

oversupply penalty case. Specifically, in Figure 10, we illustrate the intermittency and demand

space partitions over which these expectations need to be computed. We next compare Figure 10

Θn

1

Ξn
kI kI + kR kI + kF kI + kR + kF

qFqRqI

Ω1,B(k) Ω1,NB(k) Ω2(k) Ω3(k)

Figure 10: Partitions of Demand and Intermittency Space under Oversupply Penalty
Notes. In Figure 10, for illustration purposes, we assume that kF > kR.

with Figure 3, i.e., the corresponding figure in the main model. In Figure 10, Ω1 is divided into two

subregions as Ω1,B (k) = {(ξ, θ)|ξ ≤ kI} and Ω1,NB (k) = {(ξ, θ)|kI < ξ ≤ kI + θkR}. In Ω1,NB (k)

capacity constraints are nonbinding for all sources, whereas in Ω1,B, there is an excess inflexible

capacity, causing λ∗I (k, ξ, θ) = −ro. By accounting for this difference, we characterize the optimal

capacity portfolio below.

Proposition 7. Consider the problem given in (18) and (6). An investment vector k∗ ∈ R3
+ is
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optimal if and only if there exists a v ∈ R3
+ such that

N∑
n=1

E

−ro

0

0

∣∣∣∣∣∣∣∣∣∣
Ω1,B (k∗)

Pn (Ω1,B (k∗)) + E


cF

ΘncF

0

∣∣∣∣∣∣∣∣∣∣
Ω2 (k∗)

Pn (Ω2 (k∗)) (D.1)

+E


ru

Θnru

ru − cF

∣∣∣∣∣∣∣∣∣∣
Ω3 (k∗)

Pn (Ω3 (k∗))

 =


αI + cIN − vI

αR − vR
αF − vF

 (D.2)

∀i ∈ {I,R, F} : kivi = 0 (D.3)

Proposition 7 characterizes the KKT conditions for the optimal capacity investments under the

oversupply penalty rate. Compared to the KKT conditions in Proposition 1, the conditions in this

case include the oversupply penalty for the inflexible source when the demand exceeds the capacity

of the inflexible source in Ω1,B (k∗). The reason is that the oversupply penalty is only incurred by

the inflexible source as the other sources would not be dispatched to avoid any oversupply penalty

if the demand exceeds their capacity.

E Proofs

Proof of Lemma 1. Let q∗I < k∗I be the optimal solution in (2). Define k̄I = k∗I − ε for some ε > 0

such that q∗I < k̄I . Note that k̄I is a feasible solution with a strictly lower cost, contradicting the

optimality of k∗I .

Proof of Lemma 2. Observe that (3) decreases in qR and qF at respective rates of r and r− cF .

Hence, it is optimal to dispatch the renewable source first, followed by the flexible source, i.e.,

q∗R (k, ξ, θ) = min (θkR, ξ − kI)+ and q∗F (k, ξ, θ) = min (kF , ξ − kI − θkR)+ .

Before proceeding to the proofs of the propositions, we present a lemma for later use.

Lemma 4. Consider a log-concave function f (·). Let x, y, and z be positive scalars. Then,

f(x+ y)

f(x)
≥ f(x+ y + z)

f(x+ z)
. (E.1)

Proof of Lemma 4. This inequality holds if and only if log f (x+ y)+log f (x+ z) ≥ log f (x+ y + z)+
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log f (x). Let λ = y
y+z , by the definition of log-concavity

log f (λ (x+ y + z) + (1− λ)x = x+ y) ≥λ log f (x+ y + z) + (1− λ) log f (x)

log f ((1− λ) (x+ y + z) + λx = x+ z) ≥ (1− λ) log f (x+ y + z) + λ log f (x) .

Adding these inequalities side by side, we observe that log f (x+ y)+log f (x+ z) ≥ log f (x+ y + z)+

log f (x) . Hence, the inequality given in (E.1) holds.

Proof of Proposition 1. This proof follows similar arguments as in Van Mieghem (1998) and

Sting and Huchzermeier (2012). We first note that the dispatch problem given in (3)–(5) can be

equivalently expressed as

C (k, ξ, θ) = min
qR,qF ,s≥0

cF qF + rs

subject to
qR
θ
≤ kR ← λR

qF ≤ kF ← λF

− s− qR − qF ≤ kI − ξ ← λI ,

where λi’s are the decision variables of the following dual problem

max
λ∈R3

+

(ξ − kI)λI − kRλR − kFλF

subject to λI ≤
λR
θ

λI ≤ λF + cF

λI ≤ r.

Since C(·, ξ, θ) is the minimal solution of a linear program, it is convex. Thus, Π̄(·) given in (6)

is also convex because convexity is preserved under expectation and summation. Therefore, KKT

conditions (7) and (8) are sufficient and necessary to identify the minimizer of Π̄(·).

We next show that E[C(k,Ξ,Θ)] = −E[λ(k,Ξ,Θ)], where we drop the period index for brevity.

First, we note that the primal problem is always finite as the demand and intermittency distributions

are bounded. Hence, the dual problem and the primal has the same objective value when they are

both optimal. Let λ∗ (k, ξ, θ) be the optimal dual solution for given k, ξ, and θ and fix some

k0 ∈ R3
+. Then, for any k ∈ R3

+: C (k, ξ, θ) ≥ ξλ∗I
(
k0, ξ, θ

)
− k′λ∗

(
k0, ξ, θ

)
. Combining this with

C
(
k0, ξ, θ

)
= ξλ∗I

(
k0, ξ, θ

)
− k0

′
λ∗
(
k0, ξ, θ

)
, we obtain that

−C (k, ξ, θ) ≤ −C
(
k0, ξ, θ

)
+
(
k − k0

)′
λ∗
(
k0, ξ, θ

)
.
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Taking expectations of both sides, we observe that E[λ (k,Ξ,Θ)] is a subgradient of E[−C (k,Ξ,Θ)]

evaluated at k0. Because C (k,Ξ,Θ) is convex, it is differentiable almost everywhere (a.e.) except

for a set whose Lebesgue mesaure is zero as demand and intermittency are continuous. Thus,

∇kC (k,Ξ,Θ) is single-valued a.e. This implies that the subgradient is unique for any k ∈ R3
+ and

the KKT conditions given in (7) and (8) jointly define the optimal solution.

Proof of Proposition 2. Note that in the triple sourcing case (i.e., k > 0), by expressing the

demand and intermittency partitions explicitly, the first order conditions (FOCs) with respect to

(wrt) kI , kR, and kF can be sequentially written as

F (k) =−
N∑
n=1

∫ 1

θ=0

[
r − (r − cF )FΞn|Θn (kI + θkR + kF |θ)− cFFΞn|Θn (kI + θkR|θ)

]
fΘn (θ) dθ + αI + cIN

G (k) =−
N∑
n=1

∫ 1

θ=0
θ
[
r − (r − cF )FΞn|Θn (kI + θkR + kF |θ)− cFFΞn|Θn (kI + θkR|θ)

]
fΘn (θ) dθ + αR

H (k) =−
N∑
n=1

∫ 1

θ=0
(r − cF )

(
1− FΞn|Θn (kI + θkR + kF |θ)

)
fΘn (θ) dθ + αF .

Here, FΞn|Θn(·|·) denotes the (conditional) cumulative distribution function. In addition, let

Xn = (r − cF ) fΞn|Θn (k∗I + Θnk
∗
R + k∗F |Θn) (E.2)

Yn = cF fΞn|Θn (k∗I + Θnk
∗
R|Θn), (E.3)

where E [Xn] = (r − cF )
∫ 1
θ=0 f(Ξn,Θn) (k∗I + θk∗R + k∗F , θ) dθ and E [Yn] = cF

∫ 1
θ=0 f(Ξn,Θn) (k∗I + θk∗R, θ) dθ.

(i) We first show that
dk∗I
dαI
≤ 0. By implicit differentiation and Cramer’s rule, it can be shown that

dk∗I
dαI

=

∣∣∣∣∣∣∣∣∣∣
− ∂F
∂αI

∂F
∂kR

∂F
∂kF

− ∂G
∂αI

∂G
∂kR

∂G
∂kF

− ∂H
∂αI

∂H
∂kR

∂H
∂kF

∣∣∣∣∣∣∣∣∣∣
H

, (E.4)

where the FOCs and the determinant of the Hessian matrix, H, are evaluated at k∗. Because

H > 0, to show that
dk∗I
dαI
≤ 0, it suffices to show that the numerator is negative in (E.4). The

numerator is −E
[∑N

n=1 Θ2
n (Xn + Yn)

]
E
[∑N

n=1Xn

]
+ E

[∑N
n=1 ΘnXn

]
E
[∑N

n=1 ΘnXn

]
, where

Xn and Yn are defined in (E.2) and (E.3), respectively. By Cauchy-Schwarz inequality, this

is negative. Next, we consider
dk∗R
dαR

and following similar steps as above, one can show that

this derivative is given as −E
[∑N

n=1 Yn

]
E
[∑N

n=1Xn

]
/H, and hence negative. Finally,

dk∗F
dαF

={
−E

[∑N
n=1 (Xn + Yn)

]
E
[∑N

n=1 Θ2
n (Xn + Yn)

]
+ E

[∑N
n=1 Θn (Xn + Yn)

]
E
[∑N

n=1 Θn (Xn + Yn)
]}

/H,

which is also negative. (ii) Using similar steps, one can show that
dk∗i
dαj

=
dk∗j
dαi

for i, j ∈ {I,R, F} .
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Proof of Proposition 3. Recall that H ≥ 0 is the determinant of the Hessian matrix for the

objective function given in (6), evaluated at k∗. (i) The inflexible and renewable sources are sub-

stitutes because
dk∗I
dαR

=
dk∗R
dαI

= E
[∑N

n=1Xn

]
E
[∑N

n=1 ΘnYn

]
/H ≥ 0, where Xn and Yn are defined

in (E.2) and (E.3), respectively. (ii) It can be shown that
dk∗F
dαI

=
dk∗I
dαF
≥ ZcF (r − cF ) /H, where

Z =
(
E
[∑N

n=1Xn

]
E
[∑N

n=1 Θ2
nYn

]
− E

[∑N
n=1 ΘnXn

]
E
[∑N

n=1 ΘnYn

])
/ [cF (r − cF )]. Thus, to

show that
dk∗F
dαI
≥ 0, it suffices to show that Z ≥ 0. We next investigate Z by using the definitions

of Xn and Yn, and suppressing the star notation:

Z =
N∑
n=1

∫ 1

θ=0
f(Ξn,Θn) (kI + θkR + kF , θ) dθ ×

N∑
n=1

∫ 1

θ=0
θ2f(Ξn,Θn) (kI + θkR, θ) dθ

−
N∑
n=1

∫ 1

θ=0
θf(Ξn,Θn) (kI + θkR + kF , θ) dθ ×

N∑
n=1

∫ 1

θ=0
θf(Ξn,Θn) (kI + θkR, θ) dθ

=
N∑
n=1

N∑
m=1

∫ 1

θ=0

∫ 1

ζ=0
θ (θ − ζ) f(Ξn,Θn) (kI + θkR, θ) f(Ξm,Θm) (kI + ζkR + kF , ζ) dζdθ

=
N∑
n=1

N∑
m=1

∫ 1

θ=0

∫ θ

ζ=0
θ (θ − ζ) f(Ξn,Θn) (kI + θkR, θ) f(Ξm,Θm) (kI + ζkR + kF , ζ) dζdθ

+
N∑
n=1

N∑
m=1

∫ 1

θ=0

∫ 1

ζ=θ
θ (θ − ζ) f(Ξn,Θn) (kI + θkR, θ) f(Ξm,Θm) (kI + ζkR + kF , ζ) dζdθ

Note that, by changing the order of integration, the last double summation is equivalent to

−∑N
n=1

∑N
m=1

∫ 1
ζ=0

∫ ζ
θ=0 θ (ζ − θ) f(Ξn,Θn) (kI + θkR, θ) f(Ξm,Θm) (kI + ζkR + kF , ζ) dθdζ. In this ex-

pression, renaming θ as ζ, m as n and vice-versa, we observe that

Z =
N∑
n=1

N∑
m=1

∫ 1

θ=0

[∫ θ

ζ=0
(θ − ζ)

(
θf(Ξn,Θn) (kI + θkR, θ) f(Ξm,Θm) (kI + ζkR + kF , ζ)

−ζf(Ξm,Θm) (kI + ζkR, ζ) f(Ξn,Θn) (kI + θkR + kF , θ)
)
dζ
]
dθ.

Here, the summation and integration can be interchanged. Thus, Z ≥ 0 if∑N
n=1 f(Ξn,Θn) (kI + ζkR + kF , ζ)∑N

n=1 f(Ξn,Θn) (kI + ζkR, ζ)
≥ ζ

θ

∑N
n=1 f(Ξn,Θn) (kI + θkR + kF , θ)∑N

n=1 f(Ξn,Θn) (kI + θkR, θ)
.

for all θ > ζ. This inequality holds under Assumption 1 because∑N
n=1 f(Ξn,Θn) (kI + ζkR + kF , ζ)∑N

n=1 f(Ξn,Θn) (kI + ζkR, ζ)
=
g (kI + ζkR + kF , ζ)

g (kI + ζkR, ζ)
≥ g (kI + θkR + kF , ζ)

g (kI + θkR, ζ)

≥g (kI + θkR + kF , θ)

g (kI + θkR, θ)
=

∑N
n=1 f(Ξn,Θn) (kI + θkR + kF , θ)∑N

n=1 f(Ξn,Θn) (kI + θkR, θ)
.

Here, the first inequality is due to Assumption 1(i) that g (·, θ) is log-concave for any θ. Specifically,

apply Lemma 4 with x ≡ kI + ζkR, y ≡ kF , and z ≡ (θ − ζ) kR. The second inequality above is due
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to Assumption 1(ii) that g(ξ|θ2)
g(ξ|θ1) is decreasing in ξ for any θ2 ≥ θ1, i.e., g(kI+θkR,θ)

g(kI+θkR,ζ)
≥ g(kI+θkR+kF ,θ)

g(kI+θkR+kF ,ζ)

for θ > ζ. (iii) Finally,
dk∗F
dαR

=
dk∗R
dαF

= −TcF (r − cF ) /H, where H is the Hessian defined above and

T =

(
E

[
N∑
n=1

Xn

]
E

[
N∑
n=1

ΘnYn

]
− E

[
N∑
n=1

ΘnXn

]
E

[
N∑
n=1

Yn

])
/ [cF (r − cF )] . (E.5)

Thus, it is sufficient to show that T ≥ 0 to prove that the flexible source and the renewable source

are complements. Using a similar approach as above, one can show that

T =
N∑
n=1

N∑
m=1

∫ 1

θ=0

[∫ θ

ζ=0
(θ − ζ)

(
f(Ξn,Θn) (kI + θkR, θ) f(Ξm,Θm) (kI + ζkR + kF , ζ)

−f(Ξm,Θm) (kI + ζkR, ζ) f(Ξn,Θn) (kI + θkR + kF , θ)
)
dζ
]
dθ.

The integral and the summation can be interchanged. Consequently, T ≥ 0, if for all θ > ζ∑N
n=1 f(Ξn,Θn) (kI + ζkR + kF , ζ)∑N

n=1 f(Ξn,Θn) (kI + ζkR, ζ)
≥
∑N

n=1 f(Ξn,Θn) (kI + θkR + kF , θ)∑N
n=1 f(Ξn,Θn) (kI + θkR, θ)

. (E.6)

This inequality holds under Assumption 1 as shown above.

Proof of Lemma 3. (i) By plugging qS into the objective function in (13), we define C̄n(k, ξ, θ, γ) =

cF qF +
(
γ + bn

2 (ξ − kI − qR − qF )
)

(ξ − kI − qR − qF ), where its derivative wrt qR and qF is given

as −γ + bn (kI + qR + qF − ξ) and cF − γ + bn (kI + qR + qF − ξ), respectively. To determine op-

timal dispatch policy, we consider five cases. Case 1: γ ≤ bn (kI − ξ), ∂C̄n
∂qR
≥ 0 and ∂C̄n

∂qF
≥ 0,

hence q∗R = q∗F = 0. Case 2: bn (kI − ξ) < γ ≤ bn (kI + θkR − ξ) , q∗R = ξ − kI + γ
bn

so that

∂C̄n
∂qR

= 0, and q∗F = 0 as ∂C̄n
∂qF

≥ 0. Case 3: bn (kI + θkR − ξ) < γ ≤ cF + bn (kI + θkR − ξ) ,

q∗R = θkR so that ∂C̄n
∂qR

can be as close to 0 as possible subject to the constraint (14) and q∗F = 0

as ∂C̄n
∂qF

is still positive. Case 4: cF + bn (kI + θkR − ξ) < γ ≤ cF + bn (kI + θkR + kF − ξ) ,

similar to the previous case q∗R = θkR, but in this case q∗F = ξ − kI − θkR + γ−cF
bn

. Case 5:

cF + bn (kI + θkR + kF − ξ) < γ, q∗R remains to be θkR, and q∗F = kF so that ∂C̄n
∂qF

can be as

close to 0 as possible subject to the constraint (15). This optimal dispatch policy can be defined

as q∗R (k, ξ, θ, γ) = min
(
θkR, ξ − kI + γ

bn

)+
and q∗F (k, ξ, θ, γ) = min

(
kF , ξ − kI − θkR + γ−cF

bn

)+
.

(ii) With this optimal dispatch policy, the Hessian of the first stage problem in (17) can be shown

to be positive-definite so that the problem is jointly convex in its arguments.

Proof of Proposition 4. Let X
′
n = bnF̄Γn|Ξn,Θn (cF + bn (k∗I + Θnk

∗
R + k∗F − Ξn) |Ξn,Θn) and

Y
′
n = bn

[
FΓn|Ξn,Θn (cF + bn (k∗I + Θnk

∗
R − Ξn) |Ξn,Θn)− FΓn|Ξn,Θn (bn (k∗I + Θnk

∗
R − Ξn) |Ξn,Θn)

]
.

(i) As in the proof of Proposition 2, we use implicit differentiation to evaluate these derivatives.

dk∗I
dαR

=
dk∗R
dαI

= E
[∑N

n=1X
′
n

]
E
[∑N

n=1 ΘnY
′
n

]
/H

′
, whereH

′
is the determinant of the Hessian (which
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is positive). Thus,
dk∗I
dαR
≥ 0, indicating that the inflexible and renewable sources are substitutes.

(ii)
dk∗I
dαF

=
dk∗F
dαI
≥ Z/H, where Z = E

[∑N
n=1X

′
n

]
E
[∑N

n=1 Θ2
nY
′
n

]
−E

[∑N
n=1 ΘnX

′
n

]
E
[∑N

n=1 ΘnY
′
n

]
.

It can be shown that Z =
{∑N

n=1 bn (1− qn)
∫∞
ξ=0

[∫∞
γ=cF+bn(kI+kF−ξ) fΓn|Ξn,Θn (γ|ξ, 0) dγ

]
fΞn|Θn (ξ|0) dξ

}
×
{∑N

n=1 bnqn
∫∞
ξ=0

[∫ cF+bn(kI+kR−ξ)
γ=bn(kI+kR−ξ) fΓn|Ξn,Θn (γ|ξ, 1) dγ

]
fΞn|Θn (ξ|1) dξ

}
where we suppress the star

notation and use the Bernoulli intermittency assumption. Hence, Z is positive so that the inflex-

ible and flexible sources are substitutes. (iii) Finally, under Assumption 2(i) and (ii),
dk∗R
dαF

=

dk∗F
dαR

= −T/H, where T = E
[∑N

n=1X
′′
n

]
E
[∑N

n=1 ΘnY
′′
n

]
− E

[∑N
n=1 ΘnX

′′
n

]
E
[∑N

n=1 Y
′′
n

]
. Here,

X
′′
n = bnF̄Γn (cF + bn (k∗I + Θnk

∗
R + k∗F − Ξn)) and Y

′′
n = bnFΓn (cF + bn (k∗I + Θnk

∗
R − Ξn)) .Under

the Bernoulli intermittency distribution with qn = q for all n (Assumption 2(iv)) and for uniform

market price uncertainty (Assumption 2(v)), T = q (1− q)∑N
n=1

∑N
m=1 bnbm

bnkR
Un−Ln

[
cF

Um−Lm

]
. Be-

cause T is positive,
dk∗R
dαF
≤ 0, hence the renewable and flexible sources are complements.

Proof of Proposition 5. Under the oversupply penalty, if k > 0, the FOC wrt kI becomes

F (k) = −
N∑
n=1

∫ 1

θ=0

[
ru − (ru − cF )F(Ξn,Θn) (kI + θkR + kF , θ)− cFF(Ξn,Θn) (kI + θkR, θ)

]
fΘn (θ) dθ + αI + cIN

+ ro

N∑
n=1

FΞn (kI) .

The FOCs wrt kR and kF remain the same (by letting r = ru) as in the proof of Proposition 2. By

using implicit differentiation, one can show that
dk∗i
dro

=
{∑N

n=1 FΞn (k∗I )
}
× dk∗i
dαI

, for i ∈ {I,R, F}. (i)

This part follows from the proof of Proposition 2 that
dk∗I
dαI
≤ 0. (ii) Under Assumption 1, as shown

in the proof of Proposition 3,
dk∗F
dαI

and
dk∗R
dαI

are both positive. Hence,
dk∗i
dro
≥ 0 for i ∈ {R,F}.

Proof of Proposition 6. With slight abuse of notation, let r = ru. As shown in the proof of

Proposition 5, if ro > 0, only the FOC wrt kI changes in the triple sourcing strategy (i..e, k > 0).

Hence, it can be shown that
dk∗I
dαR

and
dk∗F
dαI

remain the same as in the proof of Proposition 3, proving

the substitution effects in part (i) and (ii) of this proposition. (iii) By using implicit differentiation,

dk∗R
dαF

= h (ro) = −
[
TcF (r − cF )− ro

∑N
n=1

∫ 1
θ=0 f(Ξn,Θn) (kI , θ) dθ

]
/H, where T is defined in (E.5)

with r = ru, and H > 0 is the determinant of the Hessian evaluated at k∗. Note that h(0) < 0 if

Assumption 1 holds in the strict sense as the inequality in (E.6) would also be strict in this case

(i.e., T > 0). Because h(ro) is a continuous function and h(0) < 0, there exists an r̄ > 0 such that

h(ro) ≤ 0 if ro ≤ r̄. Therefore, h (ro) =
dk∗R
dαF
≤ 0 if ro ≤ r̄, proving the complementarity.

Proof of Proposition 7. This proof is omitted as it is similar to the proof of Proposition 1.
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