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1. Introduction
Boyaci and Gallego (2001) consider a J -stage serial
base-stock system and study the problem of min-
imizing the expected inventory holding costs sub-
ject to fill-rate-type service constraints. They develop
bounds on the total system-stock and on base-stock
levels of each stage and incorporate these bounds
into an algorithm to find an optimal inventory policy.
They also present efficient heuristics for the problem.
This note identifies and corrects an error in the upper
bound on the optimal total system stock. Throughout
the note we deal with nonnegative, integer, local (i.e.,
installation) base-stock policies.
In §2 we provide a brief description of the bound on

the total system stock as presented and computed in
Boyaci and Gallego. In §3 we provide a procedure to
compute a correct upper bound on the optimal total
system stock.

2. Upper Bound as Presented and
Computed in Boyaci and
Gallego (2001)

The upper bound on the total stock sT in Boyaci
and Gallego is built on the fact that the last stage,

stage J , will always hold inventory and that the most
upstream stage, stage 1, provides the least fill-rate
protection. To find the “upper bound" sT , the follow-
ing recursion is presented on Page 46:

sJ = min
{
s� P�DJ < s	≥ 


}
�

s1 = min
{
s� P��D1− s1


++D2+· · ·+DJ ≤ sJ 	 < 

}
�

sT = s1+ sJ �

Note that there are misprints in the definitions of both
sJ and s1� The intended definitions, which are also
used in the computations in Boyaci and Gallego, read:

sJ = min
{
s� P�D2+···+DJ <s	≥


}
� (1)

s1 = min
{
s� P��D1−s
++D2+···+DJ <sJ 	≥


}
� (2)

For any given base-stock policy �s1� � � � � sJ 	 let

�s1� � � � � sJ 	 denote the fill-rate. Notice that sJ =
min�s� 
���0� � � � �0� s	 ≥ 
� and s1 = min�s:

�s�0� � � � �0� sJ 	 ≥ 
�� The underlying logic of the
upper bound on the total stock sT is to restrict only
stages 1 and J to hold inventory. In line with this
logic, the last stage’s minimum base-stock level is
computed taking into account the fact that all inter-
mediate stages do not hold inventory. It can be easily
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seen that sJ as given by (1) is the lower bound on the
echelon base-stock level of stage 2,

∑J
k=2 sk� Because

stage 1 provides the least fill-rate protection, the
resulting s1 + sJ is an intuitive bound on the total
system stock. On closer examination, however, it
is possible to verify that there may be no finite s

such that 
�s�0� � � � �0� sJ 	≥ 
.1 More importantly, the
recursion does not recognize the possible existence
of feasible base-stock policies with

∑J
k=2 sk ≥ sJ and∑J

k=1 sk > s1 + sJ that are candidates for the optimal
solution.

3. Correction on the Upper Bound
on sT

Computing a guaranteed upper bound on sT requires
a more exhaustive search on the feasible base-stock
policies. This can be achieved by developing upper
and lower bounds on the base-stock levels.
Notice that for any feasible policy �s1� s2� � � � � sJ 	,

it is necessary to have 
��� s2� � � � � sJ 	 > 
 so that

�s1� s2� � � � � sJ 	≥
 for some finite s1. Consider the last
stage J . The lower bound on sJ can be found as before,
assuming s1 = s2 = · · · = sJ−1 =�:

sJ =min
{
s� 
��� � � � ��� s	 > 


}
�

Similarly, an upper bound on sJ can be found by
assuming s1 = s2 = · · · = sJ−1 = 0:

sJ =min
{
s� 
�0� � � � �0� s	 > 


}
�

Consider now a given partial vector of base-
stock levels �−�−� � � � �−� sk+1� � � � � sJ 	� which satisfies

��� � � � ��� sk+1� � � � � sJ 	 > 
. A lower bound on sk,
k ≥ 2, can be found by assuming that s1 = · · · = sk−1
=�:

sk�sk+1� � � � � sJ 	

=min{s� 
��� � � � ��� s� sk+1� � � � � sJ 	 > 

}
�

1 This was not an issue for the problem instances solved in Boy-
aci and Gallego (2001). This is because when sJ is computed as
in (1), s1 would be infinite only under the unlikely event that

���0� � � � �0� sJ 	= 
�

and an upper bound on sk� k ≥ 2, can be found by
assuming s1 = · · · = sk−1 = 0:

sk�sk+1� � � � � sJ 	

=min{s� 
�0� � � � �0� s� sk+1� � � � � sJ 	 > 

}
�

Notice that given the partial vector �−� s2� � � � � � � � � sJ 	�
there is no need to calculate upper and lower bounds
for stage 1. This is because there is a unique, mini-
mum base-stock level s1 �s2� � � � � sJ 	 that satisfies the
fill-rate constraint, i.e.,

s1�s2� � � � � sJ 	=min
{
s� 
�s� s2� � � � � sJ 	≥ 
�

and any s1 > s1�s2� � � � � sJ 	 results in higher cost.
The bounds on local base-stock levels can be

used dynamically in a procedure to find the upper
bound sT . For any sJ ∈ �sJ � sJ 
� the procedure
would first compute the bounds �sJ−1�sJ 	� sJ−1�sJ 		�
Then for any sJ−1 ∈ �sJ−1�sJ 	� sJ−1�sJ 	
, the bounds
�sJ−2�sJ−1� sJ 	� sJ−2�sJ−1� sJ 		 would be computed
and the process would be repeated for sJ−2 ∈
�sJ−2�sJ−1� sJ 	� sJ−2�sJ−1� sJ 	
 until stage 1 is reached. At
this stage, it is possible to compute s1�s2� � � � � sJ 	 and
the resulting total system stock sT = s1�s2� � � � � sJ 	+∑J

k=2 sk� Repeating this for all �s2� � � � � sJ 	 within their
respective bounds and choosing the highest total
system stock would then yield the upper bound sT �
The procedure Bound(k� s) below presents a formal
description of this process. After initializing sT = 0� a
single call to Bound(J �0) yields the upper bound sT �
Notice that this is in essence a search algorithm that
evaluates only the feasible policies, in the same spirit
as the optimization algorithm in Boyaci and Gallego
(only that this procedure is bottom-up as opposed to
top-down).

Bound�k� s	
(1) Calculate sk and sk based on partial vector

�−�−� � � � �−� sk+1� � � � � sJ 	� Set sk = sk�
(2) DO WHILE sk ≤ sk
IF k > 1,
Call Bound(k−1� s).

ELSE
Calculate s1�s2� � � � � sJ 	 and sT = s1�s2� � � � � sJ 	+∑J

k=2 sk�
IF sT > sT � THEN
sT = sT �
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ENDIF
ENDIF
SET sk = sk+1
ENDO

Computing the bound sT requires considerable
computational effort. Given this bound, the algo-
rithm in Boyaci and Gallego (2001) generates an opti-
mal base-stock policy that guarantees the desired fill-
rate. Alternatively, the optimization step can be incor-
porated into the above upper-bound algorithm. For
every policy �s1�s2� � � � � sJ 	� s2� � � � � sJ 		 considered in
the algorithm, it is possible also to evaluate the inven-
tory cost. The bottom-up performance evaluation pro-
cedure in Shang and Song (2001) can be used for this
purpose, as well as for evaluating the fill-rate. Keep-
ing track of the costs would then yield the optimal
base-stock policy.
We end with a brief comment concerning feasible

policies, which we defined as policies with fill-rates

at least 
. Because of the discreteness of the policies,
it may not be possible to exactly achieve the desired
fill-rate. In this event, the inventory manager may try
to lower the average holding cost by using a com-
bination of base-stock policies that on average have
the desired fill-rate. Despite the fact that such savings
come at the expense of increased volatility in the fill-
rate, this “mixed” policy is indeed the optimal policy
form for the studied problem (Axsäter 2003).
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