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or many companies, inventory record inaccuracy is a major obstacle to achieving operational excellence. In

this paper, we consider an inventory system in which inventory records are inaccurate. The manager makes
inventory inspection and replenishment decisions at the beginning of each period. There is a cost associated
with each inspection. If an inspection is performed, inventory records are aligned with physical inventory. The
objective is to develop a joint inspection and replenishment policy that minimizes total costs in a finite horizon.
We prove that an inspection adjusted base-stock (IABS) policy is optimal for the single-period problem. In the
finite-horizon problem, we show that the IABS policy is near optimal in a numerical study. Under this policy,
the manager performs an inspection if the inventory recorded is less than a threshold level, and orders up to a
base-stock level that depends on the number of periods since the last inspection. The prevalent approach to deal
with inventory inaccuracy in practice is to implement cycle-count programs. Based on the structure of the IABS
policy, we propose a new cycle-count policy with state-dependent base-stock levels (CCABS). We show that
CCABS is almost as effective as the IABS policy. In addition, we provide guidelines for practitioners to design
effective cycle-count programs by conducting sensitivity analyses on the IABS policy. Finally, by comparing
the costs associated with these policies and several benchmark systems, we quantify the true value of accurate

inventory information, which may be provided by radio-frequency identification (RFID) systems.
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1. Introduction

Inventory record inaccuracy is a common problem
across industries. Although companies have invested
substantial amounts of money to automate and improve
their inventory management processes, inventory
records and physical inventory are, contrary to popu-
lar belief, seldom aligned. There are several causes of
discrepancies between inventory records and physical
inventory: stock loss or shrinkage, transaction errors
(in inbound or outbound processes), and product mis-
placement.! Such misalignment may create significant
losses for firms. Consider a large distribution com-
pany with an average inventory of $3 billion, which
we refer to as Beta to preserve confidentiality. Beta
serves the heavy-equipment manufacturing industry
and reports severe inventory inaccuracy problems in

! See Piasecki (2003) and DeHoratius and Raman (2004) for an ex-
tensive discussion on the causes and the extent of inventory inac-
curacy.
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their distribution centers. Although Beta has been
carrying out several programs to improve inventory
accuracy, the records were inaccurate by 1.6% of the
total inventory value at the end of 2004. Similar prob-
lems are faced by the retail industry. According to
Raman et al. (2001), records were inaccurate for 65%
of the SKUs at a publicly traded retailer and the mag-
nitude of the errors, on average, is 35% of the tar-
get stock levels. The direct effect of inventory record
inaccuracy is losses resulting from ineffective inven-
tory order decisions. When an out-of-stock item is
reported as in stock, an automated replenishment sys-
tem may not reorder that product, which may result
in higher backorder penalties or lost sales. On the
other hand, if the records show fewer items than the
physical inventory level, more of that product would
be ordered, leading to higher inventory costs.

To remedy this problem, most companies imple-
ment a cycle-count program. Cycle counting refers to
any process that verifies the correctness of inventory
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quantity data by counting portions of the inventory
on an ongoing basis. The major goals of cycle-
counting programs are to identify process problems
and to correct inventory data. Usually products are
classified according to an ABC system, which is based
on SKU rankings of a specific measure, such as veloc-
ity (frequency of transactions), units sold/consumed,
or dollar value of inventory. Then, count cycles are
assigned to each group using rough guidelines. The
experience of a senior operations manager at EMC?,
an information systems and storage equipment man-
ufacturer, seems to be typical: “We perform cycle-
counts for A-items monthly, for B-items every three
months, and for C-items every six months. In our facil-
ity, we have to run an 8-hour shift of about 100 work-
ers on a Friday to perform a cycle-count for A-items.
I am not sure if it is necessary to count all A-items
every month. Some of the counted items already have
a high level of accuracy” (Pinkerman 2005).

There are several important issues to be discussed
in the above inspection practice. First, the trade-
off between inspection and inventory-related costs
is not carefully considered. Specifically, if inspec-
tions are conducted more frequently, accurate inven-
tory information leads to lower inventory-related
costs. However, more frequent inspections increase the
total inspection cost. Hence, it is critical for inven-
tory managers to choose the right inspection cycle
for each product. Another important question almost
always neglected in industry hinges upon whether
the replenishment policy should be adjusted accord-
ing to the level of inventory inaccuracy or to the
chosen inspection policy. In particular, if the inspec-
tion cost is high, it may be better to inspect less fre-
quently but carry more inventory to account for the
increased uncertainty stemming from record inaccu-
racy. Thus, it is important to derive an optimal joint
inventory inspection and replenishment policy that
takes into account these trade-offs. Second, there is
little research on the effectiveness of the commonly
used cycle-count approach and how the inspection
cycle for each product should be determined. Third,
companies may adopt advanced inventory-tracking
systems, such as RFID, to minimize inventory inaccu-
racy. Because adopting such a system requires signif-
icant investment, it is important to carefully assess its
potential benefit.

In this paper, we investigate these issues in a single-
product, single-location periodic inventory system in
which inventory records are inaccurate. Inaccuracy
is due to a random error that changes the physi-
cal inventory level at the end of each period. These
errors are not observed by the information system
until an inspection is performed. Thus, the discrep-
ancy between the inventory record and the physi-
cal inventory equals the total accumulated error since
the last inspection. Customer demand in each period
is stochastic and unmet demand is backlogged. The
manager makes the inventory inspection and replen-
ishment decisions at the beginning of each period. If
inventory is inspected, inventory records are aligned
with physical inventory, but an inspection cost is
incurred. Our objective is to find a joint inventory
inspection and replenishment policy that minimizes
total inventory-related and inspection costs over a
finite horizon.

We first characterize the optimal joint replenish-
ment and inspection policy in a single period. We
show that there exists a threshold inventory level
for the inspection decision. The manager should per-
form the inspection if and only if the initial inven-
tory record is less than or equal to the threshold level.
As for the inventory replenishment policy, a base-
stock policy is optimal. Both the threshold level and
the base-stock level depend on the level of inaccu-
racy in the system. We term this structured optimal
policy the “inspection-adjusted base-stock policy,” or
the IABS policy for short. The optimal policy for
the finite-horizon problem may not have a simple
form, because the expected future cost function is
poorly behaved. It is therefore desirable to construct
a simple and effective heuristic policy. In our numer-
ical study, we find that the optimal policy has the
structure of the IABS policy in most examples. To
reflect this observation, we show that an IABS policy
is optimal for a revised dynamic program that pro-
vides a close approximation of the exact cost func-
tion. We propose a heuristic that employs the IABS
policy in each period with parameters obtained from
the revised dynamic program. We term this the IABS
heuristic and show in a numerical study that it is near
optimal: The cost of the IABS heuristic is, on average,
within 0.2% of the optimal cost.

Investigating the heuristic solutions in the cases
with stationary data, we find that the IABS heuristic
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tends to conduct inspections in fixed cycles. This
result suggests that a cycle-count policy may be effec-
tive if the cycle length is similar to that of the IABS
heuristic. In practice, however, inventory inaccuracy
is often not taken into account in making replenish-
ment decisions between cycle-counts. We model this
practice and term it as the standard cycle-count (CC)
heuristic. Based on the structure of the IABS heuris-
tic, we propose an improved cycle-count heuristic, in
which the base-stock level is adjusted according to
the number of periods since last inspection (CCABS).
The best cycle length for these cycle-count heuris-
tics can be obtained via simulation or from the IABS
policy. In our numerical study, CCABS has an aver-
age optimality gap of 0.5% and CC has an optimality
gap of 1.8%. The simpler structure of cycle-count pol-
icy (i.e., a fixed inspection schedule) can make it
an appealing policy for practitioners over the IABS
policy. However, if a company chooses to imple-
ment a cycle-count program, we recommend that
CCABS should be adopted instead of CC. The perfor-
mance of CCABS slightly deteriorates in cases with
nonstationary cost data, higher inspection costs, and
larger demand variance. In such cases, IABS heuristic
should be used as it achieves near-optimal results in
all cases.

Several important insights can be drawn by study-
ing the IABS policy. First, to minimize the total inven-
tory and inspection costs, companies need to carefully
adjust base-stock levels across periods: As the num-
ber of periods since the last inspection increases,
the order-up-to level should be increased to accom-
modate the added uncertainty caused by inventory
inaccuracy. In addition, analytical and numerical sen-
sitivity analyses on solution parameters show that,
all else being equal, a product with higher value,
larger error variance, smaller inspection cost, or
smaller demand variance should be inspected more
frequently. If a cycle-count program requires prod-
ucts to be classified into groups with different inspec-
tion schedules, these sensitivity analysis results on the
IABS heuristic could be useful in designing an ABC
classification scheme.

Radio-frequency identification (RFID) technology is
being increasingly adopted in supply chain and inven-
tory management applications. One of the benefits
of RFID systems is their ability to provide accurate
inventory information. Assessing the value of perfect

information by comparing a system with perfect in-
formation with a system managed under policies
that do not take inventory inaccuracy into account
may be misleading. The true value of RFID can be
assessed only by comparing a perfect information
system with a system that mitigates the effects of
inaccuracy by means of replenishment and inspection
strategies. We compare the optimal costs of a no-error
system (i.e., perfect RFID systems are installed) with
an inaccurate-record system that is managed near
optimally with the IABS heuristic, and an inaccurate-
record system that is managed as if the records
were accurate. We find that the increase in inven-
tory costs resulting from inaccurate information is
significant. Although RFID systems could help elim-
inate these costs completely, an effective inspection
and replenishment policy, such as the IABS policy, can
recover a large portion of the benefit that RFID sys-
tems promise. In our numerical study, the true value
of accurate inventory information provided by RFID
systems is about one-third of the total potential losses
due to inventory record inaccuracy. This finding is
especially important for small- and middle-size com-
panies that may not be able to make large investments
in RFID systems.

1.1. Literature Review

The literature on inventory accuracy has not drawn
much attention until recently. Iglehart and Morey
(1972) may be the first paper to discuss this problem.
They consider count frequency and base-stock level
to minimize inspection and inventory-holding costs
subject to the probability that showing in stock when
the item is actually out of stock is less than a prespec-
ified level. There are several recent empirical stud-
ies that investigate inventory inaccuracy. Sheppard
and Brown (1993) describe a field experiment in
order to assess the causes of inventory record errors
in a manufacturing setting. Raman and Ton (2004)
describe how inventory accuracy is achieved at an
electronics distributor by means of process redesign.
DeHoratius and Raman (2004) empirically explore the
extent of inventory record inaccuracy and find that
it increases with sales, the number of stages in the
supply chain, and product variety. Analytical mod-
els have been developed recently to study inven-
tory inaccuracy problems. Kang and Gershwin (2003)
use simulation to demonstrate that even small inven-
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tory discrepancies may lead to severe stockouts. They
also propose several approaches to mitigate this prob-
lem. Bensoussan et al. (2005, 2006) consider inven-
tory models in which inventory information is inac-
curate due to information delay and show that opti-
mal ordering policies can be identified through “ref-
erence inventory positions.” Atali et al. (2005) explic-
itly model several sources of inaccuracy and present
a heuristic replenishment policy under a given cycle-
count policy. Camdereli and Swaminathan (2005) dis-
cuss optimal stocking decisions and coordinating con-
tracts in a single-period, single-location system with
misplaced inventory. DeHoratius et al. (2005) consider
inventory management tools that account for record
errors using a Bayesian updating of error distribution.
None of these recent papers consider the optimization
of the inspection decisions. For a review of the litera-
ture on RFID-related models and future applications,
see Lee and Ozer (2005) and Zipkin (2006).

The present model is similar to DeCroix and
Mookerjee (1997), who consider a model in which
a manager decides at the beginning of each period
whether to purchase demand information in order
to eliminate variability of demand in the current
period, and subsequently decides how much to order.
However, there are several distinctions between their
model and ours, which make both the analysis and
the insights of the two models significantly different.
First, in their case, inventory level before ordering is
deterministic before making the acquisition decision,
but in our model before the inspection it is a random
variable. Second, in their model, the current acqui-
sition decision does not affect demand variability in
future periods. In our model, the inspection decision
affects the future inaccuracy levels, which has the
same effect of increasing demand variability.

Our model is also related to machine-repair prob-
lems in which the machine deteriorates over time
and the production rate depends on the state of
the machine. The problem is to determine joint pro-
duction and repair decisions. The unknown machine
state corresponds to the level of inaccuracy in our
model, whereas the repair decision corresponds to the
inspection decision. There is a rich literature on this
issue, e.g., Derman and Lieberman (1967), Ross (1971),
Rosenfield (1976), White (1978), and Singh et al.
(2004). However, their formulations do not include
inventory-related costs. One exception is Venkatesan

(1984), who considers a finite-horizon problem with
random demands and perfect repair to minimize fixed
and variable production, inventory-holding, shortage,
and repair costs. He derives conditions on the value
functions so that the structured policy in the single-
period problem can carry over to the finite-horizon
problem. The one-period inventory cost function in
Venkatesan (1984) is independent of the state of the
machine, whereas it depends on the inaccuracy level
in our model.

The literature on production systems with random
yield and imperfect quality is also relevant. In ran-
dom yield models, yield uncertainty is resolved after
a delivery is made and before demand is realized.
For the imperfect quality problem, Lee and Rosenblatt
(1985), Peters et al. (1988), So and Tang (1995), and
Chen et al. (2001) develop joint inspection/rework
and lot-sizing policies to minimize inspection, sam-
pling, rework, and inventory-related costs. In these
models, uncertainty about the number of defective
units is resolved when demand is realized. See Yano
and Lee (1995) for a comprehensive review.

The rest of the paper is organized as follows:
§2 describes the model. Section 3 presents the anal-
ysis of the single-period problem and derives the
optimal IABS policy. Section 4 considers the finite-
horizon problem, proposes a near-optimal heuristic
policy, and discusses its linkage to the cycle-count
policy. Section 5 presents numerical studies and dis-
cusses managerial insights. Section 6 discusses several
extensions and limitations of our model, and §7 con-
cludes. All proofs are presented in Appendix B.

2. The Model and Preliminaries

Consider a single-product, single-location inventory
system in which inventory records are inaccurate.
Let t denote the number of periods to go, t =T, T—1,
...,1,0. Inaccuracy is due to a random error e,
that changes the physical inventory level at the end
of each period t. These errors are not observed by
the information system until an inspection is per-
formed. We assume that the errors &, across periods
are independently and identically distributed and fol-
low a continuous distribution with mean zero® and

2 Note that all sources of errors other than shrinkage can generate
errors in a positive or negative direction. DeHoratius and Raman
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standard deviation o,. Moreover, the errors are cumu-
lative: Let j denote the number of periods since the
last inspection. The level of inventory record inaccu-
racy at the beginning of a period t, denoted as &,(j),
is the sum of the errors from the periods since the
last inspection, i.e., &(j) = 3. +1&;- Let D, denote ran-
dom customer demand in each period t. D, are inde-
pendently and identically distributed across periods
and follow a continuous distribution with mean u
and standard deviation . Unsatisfied demand is fully
backlogged. We assume that replenishment lead time
is zero.

The model described above fits manufacturers and
distributors well, because they usually maintain long-
term relationships and contracts with their customers
and backlog the orders if they cannot satisfy customer
demand immediately. Other modeling choices can be
made for different contexts. In retailing, for exam-
ple, a model with lost sales and an error distribu-
tion with a negative mean (due to shrinkage) may be
more appropriate. We discuss these and other possible
extensions of the model, and the challenges associated
with each, in §6.

2.1. Dynamics
We define the following variables to explain the sys-
tem dynamics:

x, = inventory record before ordering at the begin-
ning of period ¢,

Y, = inventory record after ordering at the begin-
ning of period t,

w, = physical inventory level before ordering at the
beginning of period ¢,

=x; — &())-
We use a two-dimensional vector (x,, j) to represent
the system state, 1 <j <T —t 4 1. The state vari-
ables represent the information that is available to the
inventory manager.

At the beginning of period t, the manager decides
first whether or not to inspect and then how much
to order according to the state (x,, j). If an inspection
is conducted, physical inventory w, is observed and
inventory record x, is aligned with the physical inven-
tory w,. In this case, the order quantity is y, — w, =
¥, — (x, — &(j)) and the ending physical inventory is

(2004) present a frequency diagram of the errors in their study,
which supports an error distribution with a zero mean.

¥, —D,. The system state at the beginning of the period
t —1 will be (y, — D,, 1). We assume that inspections
can be completed immediately and that no counting
errors are made.

On the other hand, if an inspection is not con-
ducted, the order quantity is y, — x;,. Because there
are j periods of error accumulated in x,, the phys-
ical inventory is a random variable, w, = x, — &(j).
The ending physical inventory is w, + (v, —x,) — D, =
Y, — &(j) — D;. The system state at the beginning of
period t —1 will be (y, —D,, j +1). In other words, the
gap between inventory record and physical inventory
at the beginning of period t —1is g,_;(j +1).

We assume that error information is learned only
through inspections. In reality, if a company has a pro-
cess for updating inventory records when backorders
occur, then it is possible that the magnitude of the
error can be automatically learned. This extension is
discussed in §6.

Throughout this paper E denotes expectation and
the subscripts of E list the random variables over
which the expectation is taken. Note also that x* =
max(x,0) and x~ =x —x™.

2.2. Costs
The cost parameters are as follows. £, is the inventory-
holding cost per unit per period, b, is the backorder
cost per unit per period, and ¢, is the purchase cost
per unit. The discount factor is y € [0, 1].

In addition to the standard inventory costs, there is
a cost associated with conducting an inspection. The
inspection cost has a fixed component k and a vari-
able component G(w) = gw* with ¢ > 0. Although we
assume a linear form for G, our results can be eas-
ily extended for nondecreasing convex functions of w.
The inspection cost given the inventory record is the
expectation of the inspection costs over the error terms.

K(x) =k+gE,;[(x — &(j))"]

Apparently, K(x) is nondecreasing and convex in x.
The objective is to characterize the optimal inven-
tory inspection and replenishment policy such that the
total cost over a finite number of periods is minimized.
We formulate this problem as a dynamic program.
We define the cost functions as follows:
N,(x, j) = optimal expected discounted cost in peri-
ods t through 1 assuming No inspection is performed
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in ¢, the initial inventory record is x, and j periods of
error have accumulated.

I,(x, j) = optimal expected discounted cost in peri-
ods t through 1 assuming Inspection is performed
in ¢, the initial inventory record is x, and j periods of
error have accumulated.

Vi(x, j) = optimal expected discounted cost in peri-
ods t through 1 assuming the initial inventory record
is x, and j periods of error have accumulated.

These expected cost functions are evaluated based
on the physical inventory level at the end of a period.
Below we show the detailed formulations of these
functions.

Although the model and the analysis can be car-
ried out with nonstationary demand, error, and cost
parameters, we present our analysis assuming station-
ary data. Therefore, we drop the time subscript in D,,
&, h;, b, and c¢,.

If no inspection is conducted in period ¢, then

Ni(x, j) = min(c(y =) +E., o[y =D —e(j))"
+o(y—=D—e(j)) 1+ vEp[Viea(y =D, j+1)]).
Define
L(y, j)=cy+E.,plh(y —D —&(j)"
+b(y—D—2(j)"], )
H(y, ) =Ly, )+ vEplVialy =D, j+ D] (2

Notice that L(y, j) is the single-period cost function
and H(y,j) is the cost-to-go function given initial
inventory record y and j periods of error in the sys-
tem. Thus,

Ni(x, j) =min{H,(y, j)} —cx. ®)

If an inventory inspection is conducted at the begin-
ning of period ¢, there will be no discrepancy between
the records and the physical inventory in period t.
Thus,

I, j) = Eygp | min(e(y —w)+Ep[h(y ~D)* +b(y~D) ]
+YEp[Via (v =D, DI+ K())]

= E,[,min [H(y, 0)}] - ex+ K(x). @)

The optimal total cost from periods ¢ through 1
given states x and j is given by the following dynamic
program (DP):

(DP)  Vi(x, j) = min{N,(x, j), ;(x, j)}

= mll’l{l’;lZI?Ht(y’ ])r Ee(j) I:yg},i?(j)Ht (y’ 0)]

+K(x)} —cx.

We assume that the boundary conditions are Vj(x, j)
= 0 for all x and j. This implies that the inventory has
no salvage value at the end of the horizon.

First consider the one-period expected cost L(y, j)
defined in (1). It is clear that the effect of inventory
record inaccuracy is equivalent to having a more vari-
able demand. Define Z; = D +£(j). Let {;(-) denote the
cdf of Z;. Because L(y, j) is strictly convex in y, the

minimizer s; can be found easily:

s/-=argmyin{L(y,j)}=§j1<£+—z>, jel(0,1,2,..., T).
To proceed with our discussion, we need to introduce
a concept of univariate variability orders.

DerinITION 1. If X and Y are random variables
with distributions ®y and ©,, respectively, we say
X is more variable than Y, and write X > ., Y if and
only if

a

/w(l — Oy (x))dx > /w(l —0,(x))dx foralla

(Shaked and Shanthikumar 1993).

LemMma 1. If Z; >, Z; for j > i, then there exists a
critical number 6 such that when (b —c)/(b+ h) > 6,
sj > s; (Song 1994).

From now on, we assume that (b —¢)/(b+ h) > 6
and Z; >, Z; for j > i. Note that if D and ¢; are
normally distributed, it can be verified that Z; >, Z,
holds for j > i and 6 =1/2.

Here, we would like to draw attention to a plausible
policy. Based on the model description and Lemma 1,
it is conceivable that an effective policy should con-
duct an inspection if the cost caused by the accu-
mulated error is higher than the inspection cost and
adjust base-stock levels according to the inaccuracy
level. This suggests a heuristic policy in which an
inspection is conducted in a fixed cycle and the base-
stock level depends on the number of periods since
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the last inspection. Indeed, we shall examine this
heuristic policy, referred to as the cycle-count policy
with adjusted base-stock levels (the CCABS policy), in
detail in §4.3. Although the CCABS policy is appeal-
ing because it may be easy to implement, it is nec-
essary to assess its effectiveness. In order to achieve
this, we characterize the optimal policy in the follow-
ing sections. Also, examining the optimal policy can
help us develop insights for designing effective cycle-
count programs.

3. Analysis of the Single-Period
Problem

We consider the problem in the last period. For sim-
plicity, we drop the subscript t = 1. We first charac-
terize the optimal replenishment policy and derive
the resulting cost functions in the cases of inspec-
tion and no-inspection. We then characterize the opti-
mal inspection decision by comparing these cost
functions.

3.1. Derivation of the Optimal Policy
Consider the case without inspection. Suppose that
the error level is £(j) at the beginning of the period.

N(x, j) = min H(y, j) - cx
y=x
= H(max{x, s;}, j) — cx.
Note that H(y,j) = L(y, j), because Vy(y,j) = 0.

Next, consider the case with inspection. In this case,
x is aligned with w and

I(x, j) = E [yg_i&j)H(y, 0)] —cx+K(x)
= E.()[H(max{x — &(j), 5}, 0)] — cx + K (x).

To characterize the optimal inspection and replen-
ishment policy, we need to compare the H(y, j) and
H(y, 0) functions. Figure 1 illustrates these functions
for j=3.

ProrositioN 1. (1) H(y, j) = H(y, 1), for all y and
j>1.(2) H(s;, j) > H(s;, i), for j > i.

Whether an inspection will be made depends on the
comparison of N(x, j) and I(x, j). We define the aux-
iliary functions N°(x, j) and I°(x, j), which are simply

Figure 1 Single-Period Cost Functions H(y, 0) and H(y, 3) for k =5,
0’8

9=0,c=4,h=1,0=39,0=8,0,=4, p=20
800 T T

\ — — H(.3)
\ H(,0)
600 — \ —

400 — N\

200 - — =

the backorder and holding costs of the N(x,j) and
I(x, j), respectively.

N°(x, j) = H(max|x, 5} ),

I°(x, ) = B, [H(max{x — &(j), 5}, 0)].

The properties stated in the following proposition are
helpful in deriving the optimal policy.

ProOPOSITION 2.

(1) N°(x, j) is constant for x < s; and convex increasing
in x for x >s.

(2) I°x, j) is convex nondecreasing in x.

(3) lim, . (N°(x, j) ~ I°(x, })) = 0.

(4) lim,_._(N(x, j) ~I°(x, })) > 0.

(5) IN°(x, j)/dx < dI°(x, j)/ox, for all x.

(6) lim K(x)=k.

x——00

From Proposition 2, it is clear that N°(x, j) > I°(x, j)
for all x and j. Figure 2 illustrates these functions
for j =3. To see the relationship between N(x, j) and
I(x, j), define

ki =H(s;, j)— H(sp, 0). (5)

This quantity is the maximum difference between the
cost functions with j errors and no-error. It can be
interpreted as the maximum amount we should be
willing to pay to switch to the no-error cost function.
Consider the three cases below:

Case 1. k > l_cj: From the proof of Proposition 2,
Part (4), we have lim,_,__ I°(x, j) = H(sy, 0). Hence,
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Figure 2 Single-Period Cost Functions After Optimal Replenishment

Decision Under No-Inspection, N/°, and Inspection, /°

300
I I I

— — N%,3) /
1°x,3) g
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lim, , (N°x,j) —I°(x,j)) > k and N(x,j) < I(x, )
for all x. There is no intersection. Therefore, when k >
I_cj, an inventory inspection should not be performed
because the fixed cost k is too large to compensate
for the benefit of correcting the inventory record. The
optimal replenishment policy is a base-stock policy:
order up to S; if x <s;; do not order, otherwise.

Case 2. 0 < k < k;: From Parts (3)-(5) of Proposi-
tion 2, N(x, j) and I(x, j) intersect only once. Let X;
be the point where N(X;, j) = I(X;, j). If the inven-
tory record x is less than or equal to J?j, an inspection
should be performed. The optimal replenishment pol-
icy is to order up to s, if x is less than s;, and not
to order otherwise. On the other hand, if the inven-
tory record x is larger than X;, an inspection should
not be performed. The optimal replenishment policy
is to order up to S; if x is less than S, and not to order
otherwise.

Case 3a. k=0 and K'(x) =0 (i.e.,, g =0): Because
N°(x, j) > I°(x, j) for all x, then N(x,j) > I(x,j) and
they do not intersect. Thus, an inspection should
always be performed, and the optimal replenishment
policy is a base-stock policy: Order up to s; if x < s;
do not order, otherwise.

Case 3b. k =0 and K'(x) > 0: N(x,j) and I(x, )
intersect only once. Thus, the optimal inspection and
replenishment policies are as in Case 2.

We call this policy the optimal “inspection-adjusted
base-stock policy,” or the optimal IABS policy for
short. From the three cases above, it is clear that

N(x,j) and I(x,j) intersect at most once. In cases
where they do not intersect, we set fj to —ooin Case 1,
and +oo in Case 3a. The following theorem formally
states the optimal policy.

THEOREM 1. An inspection adjusted base-stock (LABS)
policy with parameters (X;, sy, s;) is optimal for the single-
period problem. If x < X;, an inventory inspection is con-
ducted and the optimal base-stock level is s,. Otherwise,
no inspection is conducted and the optimal base-stock level

1s Sj‘

It may seem counterintuitive that inventory record
plays a role in the inspection decision even when
inspection costs are fixed (i.e., K(x) = k). The inspec-
tion decision depends on the interaction between the
inventory record and the level of inaccuracy in the
system. If the inventory record is high, the manager
may choose not to conduct an inspection because it
is likely that there is enough inventory to meet the
demand. On the other hand, if the number of errors
in the system is large or inspection costs are low, then
the manager may choose to conduct an inspection
even if the inventory record shows a high level of
inventory. Under this policy, once the inspection deci-
sion is made, the replenishment policy is a base-stock
policy that depends on the demand and the number
of errors in the system.

As a result of the optimal policy, V(x, j) is equal to
N(x,j) in Case 1, I(x, j) in Case 3a, and min{N(x, j),
I(x,j)} in Cases 2 and 3b. In Cases 2 and 3b, V(x, j)
is not convex, as demonstrated in Figure 3.

3.2. Properties of Optimal Policies

To see how system parameters affect the inspec-
tion decisions as well as the corresponding inven-
tory order decisions, we perform sensitivity analysis
on the optimal solution. It is worth noting that l_cj
(defined in Equation (5)) plays an important role for
inspection decisions: If I_cj < k, then it is never optimal

to perform an inspection (i.e., X; = —o0). On the other
hand, when there are j errors accumulated in the sys-
tem, an inspection is optimal for some values of x if

k<k]».

ProrosiTioN 3. (1) s; increases in j and o, (2) X; de-
creases in k and g, (3) k; increases in j, (4) when demand

and errors follow a Normal distribution, kj decreases in o,
and increases in o,, b, h, or c.
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Figure 3 Single-Period Cost Functions
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Notes. N: no inspection; /: with inspection; V/: optimal cost.

Part (1) indicates that the optimal base-stock level
should be increased—as the number of errors accu-
mulated in the system or the variability of errors in-
creases—to account for increased variability due to
inventory inaccuracy. Part (2) states that the interval
of x values such that it is optimal to inspect (i.e.,
X < X;) becomes smaller as the inspection costs k or g
become larger. Parts (3) and (4) state that k; increases
with the number of periods since the last inspection,
variance of inventory inaccuracy, purchasing, holding
and backorder costs; and decreases with demand vari-
ance. It may seem counterintuitive that inspection is
less likely for products with high demand variabil-
ity. In a highly variable environment, the cost func-
tions are relatively flat around the optimal base-stock
level, therefore, the benefit of an inspection is rela-
tively less significant. It is not reasonable to incur
the inspection cost to resolve the uncertainty due to
the inventory records when there is significant uncer-
tainty from other sources.

One could argue that products with higher demand
would have higher error variance, which suggests
that more frequent inspections are in order. On the
other hand, products with higher demand may also
have higher demand variance, which suggests less-
frequent inspections. It is not clear beforehand which
of these effects dominates. We explore this in our
numerical study.

To summarize, we conclude that, all else being
equal, more valuable products (higher b, c, or h),
products with less variable demand, products with

high error levels, or products with low inspection
costs should be inspected more frequently. The val-
ues of these parameters can vary significantly across
products. Hence, each of these variables should be
taken into account when designing an ABC classifi-
cation scheme for cycle-count or inventory accuracy
programs.

The next proposition shows that monotonic rela-
tionships exist between the optimal cost and the level
of inventory record inaccuracy. These results are help-
ful for the analysis of the finite-horizon problem.

ProrosITION 4. (1) N(x,j) = N(x,1), (2) I(x,]) >
I(x, i), and (3) V(x,j) = V(x, i) for all x and for j > i.

4. The Finite-Horizon Problem

We first demonstrate that in the finite-horizon case the
optimal policy may not have a simple structure. Con-
sider the inventory replenishment decision in f = 2.
Recall that H,(y, j) = L(y, j) + YEp[Vi(y — D, j + 1)],
where y is the inventory record after ordering. How-
ever, as seen in the previous section, V(x,j) is not
necessarily convex, so Ep[V;(y — D, 1)] may not be
unimodal (see Figure 4 for an example). Thus, the
optimal replenishment policy derived from H,(y, j)
may have more than one order-up-to level, each corre-
sponding to a certain interval of x. Hence, the result-
ing cost functions associated with no-inspection and
inspection decisions may intersect more than once.
Consequently, the optimal inspection decision cannot

Figure 4 Example of a Not Well-Behaved Future Cost Function, h=1,
c=2,b=39,k=9,g=0
25 I I
EplV,(y-D, D]
24 — —
23 _
» | | |
30 35 40 45 50

y

Notes. The pdf of demand is f(x) = (1/16)B((x/16),0.7,0.3), for 0 < x <
16, where B denotes the pdf of Beta distribution.
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be characterized by a single threshold; it has to be
specified for each x.

Theoretically, the optimal policy can always be char-
acterized by using backward recursion based on (DP).
However, explaining a policy with no simple structure
to practitioners could be difficult, hindering the pos-
sibility of implementation. More importantly, it may
not be possible to derive any managerial insights from
such an optimal policy. Therefore, it is desirable to con-
struct a simple and effective heuristic. In preliminary
numerical experiments, the optimal policy obtained
by solving (DP) had a structure similar to the IABS
policy in every period for many commonly assumed
demand distributions.® This observation motivates us
to construct a revised dynamic program, whose cost
function is a close approximation of the exact cost
function in (DP). In §4.1, we show that the IABS pol-
icy is indeed optimal in this revised dynamic pro-
gram. In §4.2, we implement this IABS policy for the
finite-horizon problem as a heuristic. In §4.3, we con-
sider two variants of the commonly used cycle-count
policy as alternative heuristics. We shall test the qual-
ity of the lower bound and the effectiveness of the
heuristics in §5.

4.1. Lower Bound
The optimality of an IABS policy can be established
if a base-stock policy is the optimal replenishment
policy (after a given inspection decision is carried
out) and the inspection and no-inspection cost func-
tions intersect at most once. To obtain this structure,
we construct a convex lower bound to the expected
cost-to-go function in each iteration of the dynamic
program. Thus, the resulting cost functions are con-
vex and base-stock policies are optimal. Further, the
revised total cost functions have properties analo-
gous to Parts (1)-(5) of Proposition 2, which ensure
the single-intersection property in the finite horizon.
Below we describe the details of the procedure.

The construction of lower-bound cost functions
starts from t = 2. Recall that when t =2, the optimal
cost function without inspection in (DP) is

No(x, j) =min{L(y, j) + yEp[Vi(y = D, j+ D]} —ex.

3 Table 1 presents the IABS policy for a few examples.

We construct a convex lower-bound function B, (y,
j+1) for Ep[Vi(y — D, j+ 1)]. (The construction of
these convex lower-bound functions is described in
the algorithm in Appendix A.) Replacing E;[V;(y—D,
j +1)] with B,(y,j+ 1), the resulting cost function
N,(x, j) is a convex lower bound to N,(x, j).

For the optimal cost function with inspection
L(x, ), we replace Ep[V;(y — D, 1)] with B,(y, 1), and
the resulting function

B(x, j) =Eyp [ min {L(y, 0)+7B,(y, )|~ ex +K(x)
is a lower bound to L, (x, j). Because L(y, 0)+yB,;(y, 1)
is convex, by Jensen’s inequality,

Lx, j)= yziy{L(]// 0)+vBi(y, D} — cx + K(x)

is a lower bound to L(x, j). Thus, L(x,j) < L(x, j).
Consequently, the optimal expected discounted cost

Vi(x, j) =min{N,(x, j), L(x, j)}

is the lower bound to the exact optimal cost V,(x, j).
Repeat this procedure for t =3,4,...,T: first con-
struct B,_;(y,j+ 1) for Ep[V,_1(y — D, j + 1)] for all
0<j<T-—t+1. Then, compute N,(x, ), L(x, ), and
then V,(x, j) for all j.

The formal description of the revised dynamic pro-
gram (RDP) is as follows.

(RDP)  Vi(x, j) = min{N,(x, j), L(x, )},

Vi(x, j) = min{N,(x, j), Li(x, )},

fort>2,

where
N(x, j)=minH(y,j)—cx, 1<j<T—t+1,
y=x
It(x/j)=minﬂt(y/0)_cx+K(x)/ 1§]§T—t—|—1,
y=x

H(y, D=L, )+ ¥Ba(y, j+1), 0<j<T—t+1.
The detailed algorithm for constructing B,_;(y, j + 1)
for t > 2, and j > 0 is given in Appendix A. Here,
we only summarize the key idea of how these lower
bound functions are constructed. B,_;(y,j + 1) is a
lower convex envelope of Ep[V,_;(y—D, j+1)]. It has
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the same limiting slopes of Ej[V, (y — D,j + 1)]
shown below:

9 .
yli@w @ED[Yt—l(y —D,j+1)]

.0 .
= lim El/t_l(x,]—i—l):—c,

X—> —00

.0 .
lim a—ED[YH(y —D,j+1)]
Yy—>o0 y

= lim VG ) =,

where /1, = Z;-=1 ¥/~1h. More specifically, B,_;(y, j+1)
consists of three linear line segments: the leftmost
one has a slope of —c, the middle one has a slope
of zero, and the rightmost one has a slope of h .
B,_1(y, j+1) is the tightest such bound for E;[V,_;(y—
D,j+1)] for j > 1. B,_;(y,1) may not be the tight-
est bound to Ep[V, ;(y — D,1)]: The leftmost part
may be shifted left to ensure that the flat middle
piece does not start before min{B,, ..., Br_;»}. Fig-
ure 5 demonstrates these lower bounds and some of
the variables used in the construction for an example.
Observe in this example that B, ;(y, j+1) > B,_(y, 1)
and dB,_(y,j+1)/dy < dB,_1(y,1)/dy for all y. The
last inequality holds because the two functions have
the same slope except for the region where B,_;(y, 1)
is increasing and B, ;(y, j+1) is flat.

This completes the definition of (RDP). The fol-
lowing can be immediately observed. V;(x,j) =
Vilx, ), 1<j<T. Also, Vi(x,j) < V,(x,j) for any t, x
and 1 <j<T—t+1. Hence, (RDP) provides a lower
bound to the (DP), i.e., V(x,1) < Vi(x,1).

Figure 5 Expected Future Cost Functions and the Constructed Bounds,

t=2and ;=5

—E— D[Y,,I(Y—D:j"'l)]

B, ,(y-D,j+1)
—A— EplV,1(y-D,1)]
—— B, (y-D,1)
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Let the minimizers of H,(y, j) be s;:
sy =argmin H(y, )
Define
NP(x, j) =min Hy(y, j) = H(maxx, sy}, ),
L(x, j)= min H,(y, 0) = Hy(max{x, s}, 0).

Because the cost functions at t =1 are the same in
DP and RDP, s; = s;;, where s;; is the minimizer
of H,(y, j). The following propositions state several
properties that are similar to the single-period case.

ProrosrTiON 5. For any t, (1) H,(y,j) is convex,
(2) Hi(y,j) = H/(y,0) for all y, and (3) S = S0 and
(4) 0H,(y,0)/0y = dH,(y, j)/dy for all y = s;.

Now, we show that an IABS policy is optimal for
RDP after establishing the single-intersection property
in the next proposition.

PROPOSITION 6. Forany t>2,and 1 <j<T—t+1,

(1) N2(x, j) is constant for x < s and convex increas-
ing for x > s,;.

(2) I)(x, j) is constant for x < s,y and convex increasing
for x > sy.

(3) lim,_ (N2(x, ) — I°(x, )) =0.

(4) Tim,_ L (NO(x, j) — I°(x, ) > 0.

(5) INP(x)/dx < I} (x)/dx, for x > s;;.

(6) N(x,j)and I,(x, j) intersect at most once.

As in the single-period case, we define the intersec-
tion point as x,; for each j in period t. The following
theorem describes the optimal policy for the revised
dynamic program. The proof is similar to the analysis
that led to Theorem 1.

THEOREM 2. An inspection-adjusted base-stock (IABS)
policy with parameters (X;, Sy, sy;) in period t and state j
is optimal for (RDP). If x, < X,;, an inspection is performed
and optimal base-stock level is s,,. Otherwise, no inspection
is performed and optimal base-stock level is sy;.

The following proposition describes the impact of
system parameters on the optimal policy. Define

I_ctj = Ht(_stj/ J) — Hi(s0, 0).

PrOPOSITION 7. For t >2, (1) X;; decreases in k and g
and increases in j. (2) ky; increases in j (3) when demand
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and errors follow a Normal distribution, k
with o,.

j increases

Part (1) indicates that the intersection point shifts
to the left with inspection cost parameters and to
the right with the number of errors accumulated.
Part (2) describes the effect of system parameters on
I_ct]-. Because I_ctj increases in j without bound, there
exists j* such that l_ctj > k for j > j*, meaning that
inspections will be not be performed for any value of
x if j < j*. Part (3) suggests that inspections should be
conducted more frequently for products with higher
error variance. Although we are not able to replicate
all of the sensitivity results from the single-period
case, our numerical study shows that results analo-
gous to Proposition 3 seem to hold for the finite hori-
zon as well.

4.2. The TABS Heuristic
The IABS heuristic uses the solutions from RDP as
the IABS policy parameters in each period. If x <X,

an inspection is performed and inventory is ordered
up to s,. Otherwise, no inspection is performed and
inventory is ordered up to s;. As we shall see in
the next section, the lower bounds developed in RDP
approximate the original cost functions very well.
Therefore, we suspect that the IABS heuristic is an
effective solution to the original problem.
Examination of the IABS heuristic solutions leads
to some interesting observations. To illustrate, we
present the policy parameters from the IABS heuristic
for five examples in Table 1. Examining the heuris-
tic parameters confirms our comparative static results.
In particular, both the order-up-to levels and the
inspection threshold level increase with j in all exam-
ples. Comparing the second and third examples with
the base case confirms that the inspection threshold
level decreases with less variable periodic error and
higher fixed inspection cost. Comparing the first peri-
ods of the fourth example and the base case, we
see that the number of cases where no inspection

Table 1 Policy Parameters of the IABS Heuristic
Example 2 Example 3 Example 4 Example 5
Example 1 g, =1 k=10 c=38 b/(b+ h)=0.975
t J Sto Sy X St Sy Xy Sto Sy X St Sy Xy Sto Sy X
1 26 27 —00 26 27 —00 26 27 —o0 33 34 —00 28 28 —o0
1 26 27 —00 26 27 —00 26 27 —o00 33 34 —00 28 28 —o00
2 26 28 —o0 26 27 —o0 26 28 —o0 33 34 —o0 28 30 —o0
4 1 26 27 —o0 26 27 —o0 26 27 —o0 33 34 —o0 28 28 —o0
2 26 28 —00 26 27 —00 26 28 —o00 33 34 —00 28 30 —o00
3 26 29 27 26 27 —o0 26 29 —o0 33 34 —o0 28 30 28
3 1 26 27 —o0 26 27 —o0 26 27 —o0 33 34 —o0 28 28 —o0
2 26 28 —00 26 27 —00 26 28 —00 33 34 —00 28 30 —o0
3 26 29 —o0 26 27 —o0 26 29 —o0 33 34 —o0 28 30 28
4 26 29 25 26 27 —00 26 29 —o00 33 34 27 28 31 30
2 1 26 27 —00 26 27 —00 26 27 —00 33 33 —00 28 28 —o0
2 26 28 —o0 26 27 —o0 26 28 —o0 33 33 —o0 28 30 —o0
3 26 29 —00 26 27 —00 26 29 —00 33 34 31 28 30 —o00
4 26 29 26 26 27 —00 26 29 25 33 34 33 28 31 26
5 26 30 28 26 27 —00 26 30 27 33 34 34 28 31 28
1 1 23 23 —00 23 23 —00 23 23 —00 25 26 —00 25 25 —o0
2 23 23 21 23 23 —o0 23 23 —o0 25 26 —o0 25 25 25
3 23 24 23 23 24 —00 23 24 —00 25 26 —00 25 26 26
4 23 24 24 23 24 —00 23 24 19 25 26 24 25 26 27
5 23 24 25 23 24 —00 23 24 22 25 26 25 25 27 28
6 23 25 25 23 25 —o00 23 25 23 25 26 26 25 27 29

Notes. Example 1 is the base example with parameters T =6, p =20, 0 =4, 0, =2, k=5, g =0, and b/(b + h) = 0.95 under
normal demand and error distribution. Parameters of Examples 2-5 are the same as the base example except for the parameter listed

in the column heading.
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is performed (i.e, X; = —o0) increases as demand
variability increases. This is due to the fact that
the importance of data inaccuracy and the value
of inspections decrease with an increase in demand
variability. The fifth example shows that the number
of no-inspection cases decreases with a higher service
level (i.e., inspection is more likely).

Most of the time, the implementation of the heuris-
tic policy is simpler than its formal structure suggests.
Observe that the IABS heuristic parameters for t > 2
are almost stationary. The optimal base-stock levels
for each j are the same across periods. The inspec-
tion threshold levels are also similar across periods.
It is also worth noting that the inspection threshold
levels are either very close to the base-stock levels
or equal to —oo, suggesting “no-inspection.” Because
demand is nonnegative and the base-stock levels tend
to be stationary, it is highly likely that x, < X,; if X;;
is finite. This implies that the IABS heuristic will rec-
ommend inspection for most realizations of x, if X,
is finite. Given that X;; is finite when k,; > k, and k;
is increasing in j, the number of periods since last
inspection (j) becomes the major factor in determining
whether an inspection should be performed. Consider
the implementation of the IABS heuristic in Example 1
of Table 1, starting from ¢ = 6. Assume a sample path
with x, <20 for all t. In Period 6, because j =1, and
X¢ = —oo, no inspection is performed. The error will
be carried to Period 5, i.e., j =2. Because X5, = —oo,
again no inspection is performed. In Period 4, with
j =3, x, <X, =27, an inspection is performed, and so
on. Table 2 summarizes the policy implementation.

In this example, IABS inspects every three periods
and adjusts the order-up-to levels according to the
number of errors accumulated. This certainly resem-
bles a cycle-count policy with an inspection cycle of
three periods. In §5.2, we report a simulation study

Table 2 Implementation of the IABS Heuristic in
Example 1 of Table 1

t i Policy implementation in Example 1
6 1 Don’t inspect, order up to 27

5 2 Don’t inspect, order up to 28

4 3 Inspect, order up to 26

3 1 Don’t inspect, order up to 27

2 2 Don’t inspect, order up to 28

1 3 Inspect, order up to 23

and find in all stationary examples that the IABS
heuristic indeed resembles a cycle-count policy in
implementation.

4.3. Cycle-Count Policy

Cycle-count programs are the most common
approach to dealing with inventory inaccuracy in
retail, distribution, and manufacturing industries.
Briefly, in a cycle-count program, a cycle length
m is chosen for a product (mostly for a family of
products), and an inspection is performed every m
periods. Inventory replenishment follows a base-stock
policy based on inventory records. Here, we consider
two cycle-count policies that differ in their setting of
base-stock levels. The first is a standard cycle-count
policy, denoted CC. It employs a base-stock policy
with base-stock level s,, where s, is the smallest y
satisfying

Pr{D, <y}=b,/(b, + I,).

Cycle-count ignores inventory inaccuracy in setting
the base-stock levels. This is consistent with how
cycle-count policies are implemented in practice.
However, we showed in the previous sections that
base-stock levels should be adjusted to account for
the number of errors accumulated in the system. To
reflect this insight, we introduce a cycle-count policy
with adjusted base-stock levels, denoted as CCABS.
CCABS sets the base-stock levels such that s,(j) is the
smallest y satisfying

Pr{D, +&,(j) <y} = b,/ (b, + hy),

1<j<m,

where j is the number of periods since the last cycle
count. We illustrate the performance of these cycle-
count policies in §5.2.

Figure 6 illustrates how total cost changes with
cycle length in the CC heuristic. It is possible to find
the best m value for a particular instance of the prob-
lem through simulation or computation of the value
function. Note that although cycle-count heuristics
perform inspections in a fixed cycle, the base-stock
levels are adjusted for nonstationarity in the data.

5. Numerical Study

This section is composed of four parts. In §5.1, we
investigate the effectiveness of the lower bound cost
function and the IABS heuristic. In §5.2, we study
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Figure 6 Total Cost from the Cycle-Count Heuristic (CC) in Example 1 Table 3 Average Performance of the Lower-Bound Cost and the IABS
of Table 1 Heuristics
107,000 Lower bound IABS heuristic
106,000 7 Scenario T Average (%) Maximum (%) Average (%) Maximum(%)
105,000 -
S 6 -19 -8.2 0.2 0.3
104,000 12 -0.9 -4 0.2 0.2
Z 103,000 24 -0.4 -2.3 0.1 0.2
= NS1 6 -2.2 -8.6 0.2 0.3
S 1020007 12 1.0 —4.0 0.2 0.2
101,000 24 -0.4 -1.7 0.1 0.2
NS2 6 —-8.38 —28.8 0.3 0.5
100000 12 54 95 03 03
99,000 24 -3.1 -5.0 0.2 0.2
98,000 — —

1 2 3 4 5 6 7 8§ 9 10 11 12 13
Cycle length in the CC heuristic

how the frequency of inspections of the IABS heuris-
tic changes with respect to system parameters via
simulation. In §5.3, we assess the performance of all
heuristics and compare them with other benchmarks.
In §5.4, we quantify the total loss due to the inventory
record inaccuracy problem and assess the true value
of RFID systems.

The system parameters in this study are: T = 24,
c=2 h=1,0€1{5,9,39, n=20 0€{2,8}, o, €
{o/4,0/2}), k € {5,40}, and g =0 (ie., K(x) = k).
The holding and backorder cost rates are chosen to
reflect 84%, 90%, and 97.5% service levels, respec-
tively. These 24 experiments are repeated under three
scenarios, resulting in a total of 72 experiments. In
the first scenario, denoted by S, all data is station-
ary. In the second scenario, denoted by NS1, purchase
and inventory costs are nonstationary such that ¢, =
c(1.5—-t/T) and h, = h(1.5 — t/T). In the third sce-
nario, denoted by NS2, demand parameters are non-
stationary such that u, = (0.5 +¢/T), o, = (0.5 +
t/T), and o, = 0,,(0.5+1t/T). Clearly, there are many
other plausible scenarios for the nonstationary case
and it is impossible to consider all. NS1 and NS2
together span many parameters and two reasonable
trends. In all cases, the error follows a Normal distri-
bution and demand follows a truncated Normal dis-
tribution. These parameters will be used for all tests
in this section.

5.1. The Effectiveness of IABS Heuristic
We verify the effectiveness of the lower-bound cost
by comparing the optimal expected discounted cost

Vr(x, 1) with the lower-bound cost V;(x, 1), the solu-
tions from the (DP) and (RDP), respectively. For each
experiment, we consider the set X = {—2u, —2u +
1,...,4u} and find the average and maximum per-
centage cost error within this range. Specifically,

Max (Vr(x, 1) = Vel D)/ Ve, 1), (6)

Average (Vr(x,1) — Vp(x, 1))/ Vr(x, 1). (7)
xeX

Note that the lower-bound cost is smaller than the
optimal cost for any value of x. Thus, the differences
are negative. We then compute the average of the
maximum percentage gaps (and the average percent-
age gaps) over 72 experiments for each T. The results
are reported in Table 3 under the heading Lower
bound. In general, the lower bound provides a close
approximation to the exact cost function.

Next, we examine the effectiveness of the IABS
heuristic policy. We calculate the total expected dis-
counted cost function for the corresponding IABS
policy. We denote the total cost as V;/(x,1). We com-
pute the respective maximum and average percentage
error of the IABS heuristic by substituting V;(x, 1) in
(6) and (7) with V{(x,1). The results are reported in
Table 3 under the heading IABS. As seen in the table,
the cost from the IABS heuristic is within 0.2% of
the optimal cost on average. The performance of the
IABS heuristic is similar in stationary and nonstation-
ary scenarios. This suggests that the IABS heuristic is
near optimal in these numerical tests.

5.2. Sensitivity Analysis on Inspection Cycles
We study the implementation of IABS heuristic via
simulation with 2,000 replications for each of the



Kok and Shang: Inspection and Replenishment Policies for Systems with Inventory Record Inaccuracy
Manufacturing & Service Operations Management 9(2), pp. 185-205, ©2007 INFORMS 199

Table 4 Average and Variance of the Cycle Length from the Implemen-

tation of the IABS Heuristics

Cycle length of IABS Cycle length of DP

Parameter Value Average Variance Average Variance
k 5 5.6 0.4 5.7 0.3
40 16.5 0.1 16.5 0.2
a, a/4 13.6 0.2 13.7 0.2
a/2 8.5 0.3 8.5 0.3
ol 2 14.8 0.2 14.8 0.2
8 7.3 0.3 7.3 0.3
at 2 55 0.8 5.3 0.6
8 8.8 0.8 8.9 0.2
b 5 12.2 0.2 12.1 0.2
9 11.3 0.4 11.4 0.2
39 9.7 0.3 9.8 0.3
Scenario S 12.0 01 11.9 0.1
NS1 1.7 0.4 11.9 0.4
NS2 9.6 0.3 9.4 0.2

TThe averages of sigma are from the complete set of numerical experi-
ments with g, = o/4 or /2.

*The averages of ¢ are from an extra set of experiments with of ¢, =
1,k=5,b=19 only.

72 instances. We report statistics on inspection inter-
vals of the IABS heuristic and the optimal policy in
Table 4. The inspection cycles resulting from these
policies are similar in all cases. From this observation
and the examination of the optimal decisions of these
policies for several examples, we conclude that the
IABS policy not only results in costs that are close to
the optimal cost, but also its inspection and replen-
ishment decisions are similar to those of the optimal
solution.

Table 4 shows that the average of the cycle length
standard deviation is almost zero in the stationary
case, meaning that the cycle length of each experiment
is fairly consistent across periods and between simu-
lation replications. This suggests that both the optimal
solution and the IABS heuristic performs inspections
in fixed cycles. However, the variance of the cycle
lengths increases in the nonstationary cases. The aver-
age cycle lengths reported in Table 4 confirm our ana-
lytical findings in Propositions 3 and 7: Inspections
are less frequent as k increases or as o, and service
level decrease. The effect of o alone can be seen in
the part of Table 4 marked with f: When o, is kept
constant, the average cycle length increases (inspec-
tion frequency decreases) with o as Proposition 3
suggests. Products with higher demand may have

both higher demand and error variances. When o, is
proportional to o, the effect of an increase in o is a
combination of the effects of o and .. As seen in the
part of Table 4 marked with t, the effect of o, dom-
inates and more frequent inspections are warranted.
Most importantly, the analytical findings based on the
IABS policy hold for the optimal solution as well, val-
idating our effort to find a heuristic with a simple
structure. We would like to emphasize that these sen-
sitivity results can be instrumental in designing an
inspection schedule or an ABC classification scheme
for a cycle-count program.

5.3. Effectiveness of Cycle-Count Policies and
Comparison with Other Benchmarks

We compare the performance of the following heuris-

tics and benchmark policies.

NE: No-error system,

DP: The optimal solution,

TABS: TABS heuristic,

CCABS: Cycle-count heuristic, base-stock levels
adjusted for errors,

CC: Cycle-count heuristic, base-stock levels not
adjusted for errors,

NI: No inspection, base-stock levels adjusted for
erTors,

IG: Ignore errors: No inspection, base-stock levels
not adjusted for errors,

Al Always inspect.

The no-error system (NE) provides the lowest pos-
sible cost that can be achieved through preventive
strategies, such as the implementation of RFID sys-
tems. Note also that a base-stock policy is optimal
in the NE case. All other policies are applied to the
system with inventory record inaccuracy. DP, IABS,
CCABS, and CC are described in detail in the pre-
vious sections. NI never performs an inspection, but
keeps track of the accumulated error and adjusts the
base-stock level accordingly. IG ignores inaccuracy
issues and simply implements the NE solution. We
posit IG as the worst-case scenario. Al performs an
inspection in every period. Let V7V denote the cost
function of a policy or system. Clearly, we have V4! =
VNE 4 Tk.

We implement the CCABS heuristic with three
parameters for each experiment. “m from IABS” de-
notes the average cycle length in the IABS imple-
mentation for a particular experiment, rounded to
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Table 5 Average Cost of the Proposed Heuristics and Benchmark Poli- Table 6 Average Percentage Cost of the Cycle-Count Heuristics Com-
cies Compared to the No-Error System pared to the IABS Heuristic
Scenario Policy—DP (%)
Policy—NE (%) S NS1 NS2 Average Parameter Value IABS CCABS(best m) CC(best m)
DP 6.2 6.5 6.2 6.3 k 5 0.2 0.3 0.5
IABS 6.3 6.7 6.4 6.5 40 0.1 0.6 341
CCABS(best m) 6.5 7.1 6.6 6.8 o, o/4 0.2 0.4 0.8
CCABS(worst m) 47.9 54.9 441 49.3 » 02 03 21
CC(best m) 7.9 8.9 75 8.1 d 5 o 06 ;
NI 11.0 12.2 13.3 12.2 : : 5
IG 18.4 20.9 25.4 215 b 5 0.1 0.5 0.8
Al 77.3 88.6 69.2 78.5 9 0.2 0.5 1.3
39 0.2 04 3.3
Scenario S 0.1 0.3 1.7
the nearest integer. “Best m” (“worst m”) denotes the mg; g; 82 ?g
value of m that yields the lowest -(h1ghest) cost for gt 0 0.2 05 15
each experiment under CCABS policy. For the cycle- 0.2 0.4 0.6 16

count heuristic, we only report the “best m” case.
Table 5 reports the simulation results for all policies.
NE is taken as the benchmark and the values reported
for each policy are the average percentage cost differ-
ence with the NE system, i.e., 100% x (V*°'i<v /VNE —1).
We make the following observations from the table.
First, IABS achieves costs that are within 0.2% of the
optimal solution. Second, CCABS(best m) performs
remarkably well and achieves only 0.5% higher than
the optimal solution on average. CC(best 1) does not
perform as well: Its average cost is 1.6% higher than
the IABS solution. Comparing the results of CCABS
with best m and worst m, we see that not choos-
ing the right cycle length can be very costly. On the
other hand, CCABS(m from IABS) achieves results
very close to the CCABS(best m). This suggests that
using the average number of periods between inspec-
tions from the IABS heuristic may be a good method
for choosing the proper cycle length for the cycle-
count policy. Although cycle-count heuristics perform
very well in these examples, it must be noted that
their performance deteriorates in certain cases. Table 6
details the performance of the cycle-count heuristics
and the IABS heuristic with respect to changes in each
parameter. We see that the performance of the stan-
dard cycle-count heuristic deteriorates significantly
as k, o, increase, and as the service level decreases.
CCABS seems more robust, its performance deterio-
rates slightly with higher k, o, and under nonstation-
ary cost data. The reason that CCABS still performs

The averages for g > 0 are from a new set of 72 experiments.

well in the NS2 case may be due to the cycle lengths
staying relatively stable due to the effects of increased
o and o, balancing each other out.

Finally, to assess the effectiveness of IABS and
cycle-count heuristics in the case of increasing inspec-
tion costs, we tested the original 72 experiments, this
time with ¢ =0.2. Comparing the ¢ > 0 case with the
g =0 case in Table 6, we see that the performances
of IABS, CCABS, and CC do not seem to be affected
significantly.

Given the relative simplicity of cycle-count pro-
grams, the performance of CCABS makes it an appeal-
ing policy. If a company implements a cycle-count
program, we recommend that CCABS is adopted
instead of the standard cycle-count policy. The best
CCABS cycle length for each product can be chosen
via simulation or by using the average cycle length
of the IABS policy. If a cycle-count program requires
products to be classified into groups with different
inspection schedules, the sensitivity analysis results
on the TABS heuristic could be useful in designing
an ABC classification scheme. CCABS performance
slightly deteriorates when inspections are expensive,
demand is more variable, and when there is nonsta-
tionarity in the data. In those cases, using the IABS
policy is the best option, because IABS provides near-
optimal solutions for all cases in the numerical study.
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5.4. Value of RFID Systems

As mentioned before, one of the benefits of RFID
systems is their ability to eliminate or significantly
reduce inventory record inaccuracy. Although indus-
try reports indicate that RFID systems have not
yet been perfected, we assume here that RFID sys-
tems are able to achieve perfect accuracy. The dif-
ference between IG and NE is the measure of the
potential benefit of eliminating inaccuracy problems
completely, which is on average 21.5% in our numer-
ical study. However, this difference does not repre-
sent the true value of RFID systems, as IG is not the
best one can do without RFID. Rather, it is the loss
due to inventory inaccuracy and policies that do not
take inaccuracy into account. A simple policy such as
the NI policy that takes inaccuracy into account when
choosing replenishment levels reduces the loss due
to record inaccuracy to, on average, 12.2%. A more
relevant comparison is between NE and a system
that has inaccurate records but is managed near opti-
mally. Therefore, we compare NE with IABS.* Near-
optimal inspection and replenishment policies such
as the IABS heuristic secure more than two-thirds of
this potential benefit by reducing costs due to record
inaccuracy to, on average, within 6.6% of NE. This
suggests that the “true” value of accurate inventory
information enabled by RFID systems in this numer-
ical study is 6.6% of the inventory-related costs and
one-third of the increased costs due to inaccuracy. We
conclude that corrective strategies can be quite effec-
tive in dealing with inventory record inaccuracy prob-
lems, even if a company cannot invest in advanced
technologies or other preventive strategies.

6. Discussion

Below we discuss extensions and limitations of the
basic model. Some of the extensions point towards
additional interesting issues, which are beyond the
scope of the current paper.

6.1. Exception Reports
In reality, it is possible that the magnitude of the error
can be automatically learned when backorders occur,

* Comparing IABS (which has the option to perform inspections)
with NI and NE may not be a fair comparison if the fixed inspection
cost were too small. This is not the case in our numerical study as
the average cost of the Al policy is 80% higher than NE.

e.g., the material handler finds an item out of stock
but the inventory record shows it to be in stock. This
may be viewed as a free inspection. Another exam-
ple would occur when business software generates
an exception report when the shipping of an item
with a positive inventory record has been delayed
for a long time. (It must be noted that most com-
panies do not have processes in place for updating
inventory records in such cases.) Our model assumes
that this information is not used to update inventory
records. However, the dynamic program can be modi-
fied to incorporate this scenario by replacing the orig-
inal H,(y, j) function with the following:

Hi(y.j) = L(y, /) +P(y=D+e(j))
“YEp,e(p[Viaa(y =D, j+1) [y=D+e(j)]
+P(y <D+e&()))
YEp,e(y[Vica(y—€(j) =D, 1) [y < D+&(j)]-

The expectations over &(j) are conditional expecta-
tions. The first term is the expected inventory costs
from the current period, the second term is the
expected future total cost if no backorder occurs, and
the last term is the expected future total cost if back-
orders occur. Note that in the last term, if backo-
rders occur, the manager aligns the inventory record
with physical inventory. The analysis and the results
in this paper can be shown to be valid in this set-
ting. Interestingly, the manager now has an incen-
tive to order less than the system without exception
reports in order to induce backorders and get a free
inspection.

Note that the above formulation is not a full learn-
ing model, because it does not allow for learning from
the nonoccurrence of exception reports. Simply know-
ing that no backorders have occurred in the last j time
periods imposes a downward bias on the distribution
of £(j) so that its mean will no longer be zero. Also,
the distribution of the error in the system depends
on the sequence of demand observations since the
last inspection. A correct formulation for this model
requires a dynamic program with a state space that
carries the history of demand and exception reports
since the last inspection. This leads to a state dimen-
sionality problem.
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6.2. Demand-Dependent Errors

Our model can be extended to the setting in which
error depends on demand realization as long as the
error mean remains zero. For example, the dynamic
program can be modified by replacing E,[V,_;(y —
D, j+1)] with Ep[V,_;(y — D, j + a(D))] where a(D)
determines the number of errors added in that period.
Our formulation and the analytical results hold. As a
simple example, suppose that a(D) = {0, if D < u; 1,
otherwise}, then we can redefine

Hi(y,j) = Ly, ) +P(D < w)Ep,.[Vi1(y =D, j) D < p]
+P(D>wEp [Vii(y =D, j+1)[D>p],

and all our results are valid for this system as well. If
the error distribution in each period is correlated with
demand, then j alone would not be able to carry suffi-
cient information about the error distribution. Again,
the dynamic program must be reformulated with a
state space including the demand observations since
the last inspection.

6.3. Imperfect Inspection

In some cases, the inspector may miscount inventory
or enter incorrect information when updating data.
Specifically, suppose that the error that remains in the
system after conducting an inspection is ae(j), where
0 < a <1. Our model can be extended to accommo-
date this scenario by replacing V,_,(y — D, 1) with
Vi_1(y =D, 1+ «j) in (DP). The optimality of the IABS
policy for the revised dynamic program can be veri-
fied in this model.

However, the partial inspection may change our
belief about the distribution of the error remaining in
the system, which will result in a more complex prob-
lem than above. Also, the partial-inspection model
leads to other statistical issues, such as determin-
ing the sample size and making statistical inferences
about the distribution of remaining error.

6.4. General Error Distribution

We assumed an error distribution with zero mean in
our model. This may be a restrictive assumption in
some situations. If a transaction error of one type is
repeated frequently (e.g., entering the SKU number
of one product when another is sold), the error mean
for one product would be positive, whereas the error

mean for the other would be negative. Our results can
be generalized for the single-period problem by con-
sidering a general error distribution. In particular, the
IABS policy is optimal and our results on the cost func-
tions and the sensitivity of the solutions hold with
the exception of Proposition 1, Part (1), and Proposi-
tion 3, Part (1). (The proofs are available upon request
from the authors.) In the finite-horizon model with
general error distributions, the property of the single-
intersection point for inspection decision breaks down,
because Proposition 6, Part (3), does not hold.

6.5. Lost Sales

Our analysis does not apply to the lost-sales case.
With lost-sales assumption, the physical inventory
level must be nonnegative, and therefore the errors
are no longer independent of the inventory level,
which breaks down the current structure of the dy-
namic program. Nonetheless, for a product with a
high service level, the backlog model may be a rea-
sonable approximation. Modeling errors that depend
on sales or inventory level encounters the same prob-
lem with the lost sales case.

6.6. Positive Lead Time

In the case of positive lead times, inspection deci-
sions during a lead-time period will affect the error
accumulated in the period, which, in turn, affects
total demand variance during the lead time. Thus,
the inventory replenishment decision at the cur-
rent period depends on the future inspection deci-
sions, and our basic model cannot accommodate this
situation.

7. Concluding Remarks

In this study, we consider a single-stage inven-
tory system with inventory record inaccuracy. In the
single-period problem, we show that the inspection-
adjusted base-stock (IABS) policy is optimal. In the
finite-horizon problem, we show that the IABS policy
is optimal for a revised dynamic program. We pro-
pose the IABS heuristic, whose policy parameters are
generated from the revised dynamic program. In a
numerical study, we find that it is near optimal and
it tends to conduct inspections in a fixed cycle. This
observation motivates us to propose an improved
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cycle-count policy (CCABS), in which inventory inac-
curacy is considered when making inventory replen-
ishment decisions. With stationary data, the CCABS
heuristic can be as effective as the IABS heuristic.

Some important conclusions can be drawn from
our study. First, conducting sensitivity analysis on the
IABS heuristic parameters reveals that, all else being
equal, products with higher value, higher error vari-
ance, lower inspection cost, or lower demand variabil-
ity should be inspected more frequently. Thus, these
variables should be taken into account when compa-
nies design ABC classification schemes in the cycle-
count programs. Second, the standard cycle-count
heuristic, which is prevalent in practice, results in sig-
nificantly higher cost because it does not consider
inventory inaccuracy when making replenishment
decisions. The CCABS heuristic should be appeal-
ing to practitioners because its performance nearly
matches that of the optimal policy and it offers the
relative simplicity of fixed inspection schedules. How-
ever, in the cases with high error levels, high inspec-
tion costs, and nonstationary data, the performance
of the CCABS heuristic deteriorates slightly. In such
cases, the IABS policy may be preferred. Third, our
study indicates that an effective inventory inspection
and replenishment policy, such as the IABS heuristic,
can secure a significant portion of the value of accu-
rate inventory information that may be provided by
RFID systems. Finally, we discuss several extensions
and the limitations of our model. These discussions
point out the challenges for more general models and
lay the groundwork for future research.
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Appendix A
ALGORITHM FOR CONSTRUCTING THE LOWER-BOUND
Funcrions IN PERIOD t.
1. Set y* to a very large positive number. Set y~>° = —y*.
2. For j=0to T—t+1:
(a) Solve for @, =min, Ep[V, ;(y—D, j+1)]°

® We perform a numerical search for finding the global minimizer in
Step 2(a). In most of our numerical examples, the E;[V,(y — D, j)]
functions are unimodal.

(b) Set Bj,; =minfy: e;; ZEp[V, 4 (y™ - D, j+1)] -
c(y—y ™)}
(c) Set m;,; = max{max{y: a;;; > Ep[V, ,(y* -D,j+
DI+ h1(y =y} si0)-
3. Set B; =min{B4, B,, -
4 Forj=0to T—t+1:

- Bropah

a1 — oy —Bia), if ¥ <Bj,

By, j+1)= @iy, i B <y <M,

Qi+ h oy — Mip1) if i <y

Appendix B

Proor of ProrosiTioN 1. We first show Part (1). Note
that

H(y, j) =cy+hy — hE[D] + (b+ 1) [ P(D+e(j) > t)dt.

y
Because (D + &(j)) >,,, (D + £(i)), by Definition 1 we have
f;o P(D + &(j) > tydt > f;o P(D + (i) > t)dt. The result
follows immediately. Part (2) follows because H(s;, i) <
H(s;, i) < H(s;, ).

Proor or ProrositionN 2. Part (1) holds because of the
definition. For Part (2), note that I°(x, j) = E. ;) [H (max{x —
£(j), s}, 0)]. Because H(max{x,sy},0) is linear for x < s
and convex increasing in x for x > s, E,;[H(max{x —
£(j), s}, 0)] is convex.

Let §; and ¥; denote the pdf and cdf of &(j), respectively.
For Part (3),

lim N°(x, j) — lim I°(x, §)

= lim H(max{x, s;}, j) — lim E,;)[H (max{x — &(j), 5}, 0)]

= lim (H(max{x, s;}, /) — (h +¢)x)

—}1_1;1;10 E. ;) [H(max{x — (), 5o}, 0) — (h +c)x]. (A1)

Consider the last term in (A.1). For fixed &(j), H(max{x —
£(7), s}, 0) — (h + ¢)x is monotone decreasing in x and con-
verges to k+ (h+c)e(j) as x — oo, where k is some constant.
Thus, by monotone convergence theorem (MCT), Equa-
tion (A.1) is equal to

Ex) [}LH;(H (max{x, s;}, j) = (h +¢)x)

~ lim (H(max[x - #(j), s}, 0) = (h+ )|

]
= E,[(c+ ()] =0.

=E,[ lim (H(max(x, 5, /) — H(max{x - #(j), 50}, 0))|

The second-to-last inequality is due to lim,,  H(x,j) =
lim,_,  H(x,0).
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For Part (4),

xli@w E. ;) [H(max{x — &(j), 5o}, 0)]

=E,[ lim_H(max{x —&(}), 5], 0)]
= Es(j) [H(s9,0)] = H(sy, 0).

The exchange of the limit and the expectation is justified
again by the MCT, as H(max{x — &(j), 55}, 0) is monotone in
x and converges to H(sy, 0) almost everywhere. Thus,

Jim (N°(x, j) = I°(x, ) = H(s;, j) — H(s, 0) > 0.

Finally, we show Part (5). Because N°(x, j) is constant for
X <s; and I°(x, j) is increasing convex for all x, the result

holds for x <s;. For x > s, N°(x, j) = H(x, j). Recall that the

error and demand distributions are continuous. Differenti-
ating N,

o
%ﬁ]) =cth+(b+ h)%(Eso‘)/D[(x ~D—e(j)7]

=c+h—(b+hPD+e(j)=x)
- c+h—(b+h)/wP(sz—u)lpj(u)du.

On the other hand, I°(x, j) = E. ) [H(max{sy, x — £(j)}, 0)].
Thus,

I’ (x, f) =5 g
o D [w aH(x—u,O)(p]-(u) du
_ /fﬁ(’[c +h— (b+ h)P(D > x — )] (u) du.
We have
INO(x,j)  AI°(x, j)
dx T ox

= (c+h)(1— W (x—5)) — (b+h)[: P(D > x — u), () du

<(e+h) (1= ;(x—5)) — (b+W)P(D = 5)(1— W) (x — 5)) =0.

The last equality holds because P(D > s;) = (c + h)/(b+ h).
For Part (6),

Tim B, [k +g(x — ()] =k + 8B, im (v — ()] =k.

The exchange of the limit and the expectation is again jus-
tified by the MCT, as G(x — &(j))* is monotone in x and
converges to zero almost everywhere.

ProoF oF PrRoPOSITION 3. Part (1) follows from Lemma 1.
Part (2) is a result of the observations that N(x, j) is inde-
pendent of k and g and I(x, j) increases with k and g. For
Parts (3), note that H(sy, 0) is independent of ¢, and j. From
Proposition 1, it can be inferred that H(y, j) is increasing j
for all y.

For Part (4) note that k; = H(s;, j) — H(s,,0) = (b + I) -

(@B —)/(b+h))(/o2+jo2 — o) where ¢ and P are

the density and distribution functions of the standard nor-
mal distribution. /o2 +jo? — o is decreasing in o and
increasing in o,. ¢(P1((b —¢)/(b+ h))) is increasing in ¢
and h for (b —c)/(b+ h) > 0.5. For the result with b, we
need to show that (b + h)d(D((b — c)/(b + h))) increases
in b. Define z as the solution to ®(z) = (b —¢)/(b+ h). By
the implicit function theorem, dz/db = (h+¢)/[(b+ h)*¢(z)].
Then I[(b + h)$p(2)]/0b = ¢(2) + ¢'(z)(b + h)dz/db = P(z) —
zd(z)((b—c)/(b+h)p(z)) = p(z) —z(1 — D(2)) > 0 for all z.

PrROOF OF ProrosITION 4. Analogously to Part (1) of
Proposition 1, we can show that H(y, j) > H(y, i) for all y
and for j > i. The results are implied by this observation
and the definition of the functions.

ProOF OF ProrosITION 5. Part (1) holds because H,(y, j)
is the sum of two convex functions.

The proof of Part (2) is by induction. We have that
Bi(y,j+1)>B,(y,1) by Vi(y, j+1) > Vi(y, 1). We also have
L(y, j) > L(y, 0). Hence, H,(y, j) > H,(y, 0) for all y, which
leads to V,(y, j) > V,(y,0) and B,(y, j) > B,(y, 0) and so on.

For Part (3), we have, by construction,

9B, 4(y,1) > 9B, 1(y,j+1)
dy B Iy

where 9/dy operator denotes the left derivative if the deriva-
tive does not exist. Note that in Step 2(c) of the algorithm
of constructing the lower-bound functions B,_(y,j+1),
we restrict 1, to be no less than s;y. Thus, by construction,
we have dB,_,(y, 1)/dy <0 at y = s;,. Because s, is the min-
imizer of L(y,0), dL(y,0)/dy =0 for y = s;,. Together, we
have

for all y and j, (A.2)

dL(y, 0) dB,_1(y, 1)
awy g, ay

_ dH,(y,0)

i OI
w

510

which implies s, > s, because s,, is the minimizer of
H,(y, 0).

Note that dL(y,0)/dy > dL(y,j)/dy for y > s;,. There-
fore, dL(y, 0)/dyl,, = IL(y, j)/dyl,,- Recall Equation (A.2),

dB,_1(y,1)/dy > c?ﬁ,?(y, j+1)/dy for all y. Thus,
IL(y,0) By, V| _ LWy, )) 9B, (y,j+1)

8]/ 510 ay 5t0 - ay 510 ay 5t0 .
That is, dH,(y,0)/dyls, = IH(y,})/dyls,, which implies

St = So-

Part (4) follows from Part (3), because JL(y,0)/dy >
dL(y,j)/dy for all y = s; and 9B, ;(y,1)/dy = B, ,(y,
j+1)/dy for all y.

PROOF OF PrOPOSITION 6. Parts (1) and (2) are by defini-
tion of these functions. Part (3) is by induction. We show
the induction step for t = 1. We have that L(y,j) con-
verges to L(y,0) as y — oo. Hence, H,(y, j) converges to
H,(y,0) as y — oo. Because it is never optimal to inspect as
x — oo, Vi(x,j) converges to H(x,j) for any j. Therefore,
EVi(y — D, j+1) converges to EV,(y — D, 1). By construc-
tion, B(y, j + 1) converges to B;(y, 1) converge as y — oc.
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Part (4) is due to Part (2) of Proposition 5. Part (5) follows
from Part (4) of Proposition 5. Part (6) follows from Parts
D-6).

PrOOF OF PrROPOSITION 7. The proof is similar to the
proof of Proposition 3, Parts (2)—(4). It is possible to show
that B, 4(y, j+1) = B, (y,i+1) and H,(y, j) > H,(y, i) for
j > i using induction on t, and then the results follow.
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