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We consider the classic N -stage serial supply systems with linear costs and stationary
random demands. There are deterministic transportation leadtimes between stages,

and unsatisfied demands are backlogged. The optimal inventory policy for this system is
known to be an echelon base-stock policy, which can be computed through minimizing N
nested convex functions recursively. To identify the key determinants of the optimal policy,
we develop a simple and surprisingly good heuristic. This method minimizes 2N separate
newsvendor-type cost functions, each of which uses the original problem data only. These
functions are lower and upper bounds for the echelon cost functions; their minimizers form
bounds for the optimal echelon base-stock levels. The heuristic is the simple average of
the solution bounds. In extensive numerical experiments, the average relative error of the
heuristic is 0.24%, with the maximum error less than 1.5%. The bounds and the heuristic,
which can be easily obtained by simple spreadsheet calculations, enhance the accessibility
and implementability of the multiechelon inventory theory. More importantly, the closed-
form expressions provide an analytical tool for us to gain insights into issues such as system
bottlenecks, effects of system parameters, and coordination mechanisms in decentralized
systems.
(Inventory Policies; Stochastic Demand; Serial System; Closed-Form Solutions; Sensitivity Analysis)

1. Introduction
We consider an N -stage serial supply system
with deterministic transportation leadtimes between
stages. Stationary random demand occurs at stage 1,
which obtains resupply from stage 2, stage 2 obtains
resupply from stage 3, and so on. Stage N replen-
ishes its stock from an outside supplier which has
ample stock. There are linear ordering and inven-
tory holding costs at all stages. Unsatisfied demands
at stage 1 are backlogged and incur a linear backo-
rder cost. This system has been studied extensively
since the seminal work by Clark and Scarf (1960),
who show that an echelon base-stock policy is optimal
for the finite-horizon problem. Federgruen and Zipkin
(1984) extend this result to infinite horizon and show
that a stationary order-up-to-level policy is optimal.

Chen and Zheng (1994) further streamline and sim-
plify the optimality proof. We refer to Gallego and
Zipkin (1999) for a more detailed summary of related
work and history of development.

In this paper, we focus on the infinite-horizon
problem with the objective of minimizing long-run
average cost. It is known that the optimal stationary
echelon base-stock policy can be computed through
minimizing N nested convex functions recursively.
We review this recursion in §2. Despite its deceivingly
simple form, however, it is not easy to see the key
determinants of the optimal policy and cost from
the recursion. It is also not easy to communicate the
computational procedure to managers and business-
school students who have interests in learning the
theory of supply-chain management. For one thing, it
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is not easy to implement the algorithm by using sim-
ple spreadsheet calculations—a familiar tool for those
students and practitioners. These challenges moti-
vated us to look for closed-form approximations that
can be easily obtained by using spreadsheets and at
the same time can shed light on the effect of system
parameters.

This desire echos with the observations of several
researchers. For example, according to a survey by
Cohen et al. (1994), many companies have failed to
implement advanced inventory management meth-
ods, and hence there are plenty of opportunities for
improvement. Hopp et al. (1997) conjecture that the
reason for the failure to implement inventory man-
agement methods is the difficulty of using them.

The contribution of this paper is twofold. The
first one is computational and implementational. In
particular, we develop a simple and surprisingly
good heuristic for the optimal echelon base-stock lev-
els, which can be obtained by solving 2N separate
newsvendor-type problems. More specifically, in §3
we develop an upper and a lower bound on the
average total echelon cost function of each stage,
provided all downstream stages follow the optimal
policy. These cost bounds are the convex cost func-
tions of certain single-stage inventory problems with
intuitive physical meanings. The minimizers of the
bounding functions form an upper and a lower bound
for the optimal echelon base-stock level. The simple
average of these bounds in turn forms the heuris-
tic solution for the optimal echelon base-stock level.
The end result is a closed-form solution involving
the original problem data only. In §4 we perform an
extensive numerical study to demonstrate the effec-
tiveness of the heuristic. It is shown that the aver-
age relative error of the heuristic is 0.24%, with the
maximum error less than 1.5%. It is also shown that
the upper bound function for stage-N provides a
convenient quick estimate for the optimal system cost.

The second main contribution, which perhaps is
more important, is transparency. The simple struc-
tures of the bounding functions and the closed-form
heuristic solution help open the “multi-echelon black
box.” They allow us to “know not only what the opti-
mal solution is for a given set of input data, but also
why” (Geoffrion 1976, p. 81), and therefore sharpen

our intuition on how to manage this kind of sys-
tem. More specifically, using these expressions, we
can study the effects of system parameters on the opti-
mal cost and policies analytically. This, in turn, pro-
vides guidance on how to allocate critical resources
to improve system performance. For example, in §5
it is shown that if resources are limited, then it is a
better strategy to shorten the leadtime at stage 1 (the
one nearest to the customer) or to reduce the eche-
lon holding cost at stage N (the one nearest to the
supplier).

The Clark-Scarf result (for the centralized system)
has served as a benchmark for the increasingly active
supply-chain research on decentralized systems; see,
e.g., Cachon and Zipkin (1999), Chen (1999), Lee
and Whang (1999), and Porteus (2000). We hope that
the tools developed here will help mitigate the ana-
lytical challenge and generate more insights in this
line of research. We make an initial attempt in §6;
we show that our approximations can simplify the
results in Chen (1999) on coordination mechanisms in
decentralized supply chains. We also make connection
of our work to Porteus (2000).

There have been several other efforts in the liter-
ature to construct simple bounds on optimal cost or
optimal base-stock levels. Gallego and Zipkin (1999)
discuss the issue of stock positioning and construct
three heuristics to the optimal system average cost.
In the “RD heuristic,” they decompose the system
into some subsystems and use the shortest-path algo-
rithm to search for upper bounds on the optimal
cost. Zipkin (2000) introduces a lower bound on the
optimal base-stock levels for a two-stage system by
restricting the possibility of holding inventory at the
upstream stage. By doing so, the upper echelon cost
function reduces to a single-stage cost function. The
formulation of our upper-bound cost functions is con-
sistent with this idea in the sense of collapsing an
N -stage system into a single-stage system, although
the way of construction is different. Using a different
approach, Dong and Lee (2001) also develop lower
bounds on optimal base-stock levels for systems with
convex holding and backorder cost functions, which
happen to coincide with our lower bounds when the
holding and backorder costs are linear. To our know-
ledge, there exists no previous effort before ours in
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constructing upper bounds on the optimal base-stock
levels for the serial system. An exact formula for the
optimal base-stock levels, which requires heavy com-
putation, is provided in van Houtum et al. (1996).
Gallego (1998) developes closed-form “distribution-
free” upper and lower bounds on �Q� r� policies in
a single-stage system. Glasserman (1997) establishes
bounds and asymptotics for performance measures
and base-stock levels in single and serial capacitated
systems. One of the main results from his study is
that, when the backorder cost is high, the bounds per-
form well. This is consistent with our findings in this
research. Hopp et al. (1997) suggest an easily imple-
mentable heuristic control policy for a single ware-
house with multiple parts. What they mean by “easily
implementable” is a closed-form solution for the con-
trol parameters for each part. Our heuristic solution,
too, obviously qualifies for this category.

2. Preliminaries
We now provide a brief review of the related exist-
ing theory of single- and N -stage inventory systems.
Recall that there are linear ordering costs. How-
ever, because the long-run average ordering cost is
a constant, we ignore this cost in our presentation.
Throughout the paper, we focus primarily on the
continuous-review, compound-Poisson-demand sys-
tems. All the results hold for the periodic-review
models with independent and identically distributed
(i.i.d.) demands. We refer the reader to Chen and
Zheng (1994), Gallego and Zipkin (1999), and Zipkin
(2000) for details.

2.1. The Single-Stage System
Consider a single-stage (location), single-item inven-
tory system in which the demand follows a station-
ary compound Poisson process. There is a constant
leadtime L for replenishment orders. There is a linear
holding cost for on-hand inventories with unit rate h
and a linear backorder cost for backorders with unit
rate b. It is known that a base-stock policy with base-
stock level s∗ is optimal for this system. That is, we
monitor the inventory position continuously. When-
ever the inventory position is below s∗, we order up
to s∗. Otherwise, we do not order.

Denote
D = the leadtime demand.
F �·�= cumulative distribution of D.
F −1�
�= min�y � F �y�≥ 
�, 0 ≤ 
 ≤ 1.
�x�+ = max�0�x�.
�x�− = max�0�−x�.
For any given base-stock policy with base-stock

level y, the steady-state on-hand inventory is I =
�y−D�+ and the steady-state number of backorders is
B = �y−D�−. Thus, the long-run average cost is

C�y�= E�hI + bB�= E�h�y−D�++ b�y−D�−�� (1)

Because s∗ is the optimal base-stock level which min-
imizes (1) over y, we have

s∗ = F −1

(
b

b+h
)
� (2)

The cost expression in (1) has exactly the same for-
mat as in the single-period newsvendor model with
D being the single-period demand, h the overage cost,
b the underage cost, and y the order quantity. The
solution (2) corresponds to the optimal order quantity.
For notational convenience, from now on we refer to
the problem with the cost expression in (1) and the
corresponding solution (2) as system NV�h� b�D�.

2.2. The N -Stage System
Consider a serial inventory system with N stages
and a compound-Poisson-demand process D= �D�t��
t ≥ 0�, where D�t� is the cumulative demand in the
time interval �0� t�. The material flows from stage N
to stage 1 where customer demand occurs. An out-
side supplier with ample stock supplies material to
stage N . There are constant transportation leadtimes
between stages. Unsatisfied demand is fully back-
logged. Let
j = stage index.
Lj = constant transportation leadtime from stage

j+1 to stage j .
Dj = leadtime demand for stage j =D�t+Lj�−D�t�.
h′j = installation (local) inventory holding cost rate

at stage j .
hj = echelon inventory holding cost rate at stage j =

h′j −h′j+1� �h
′
N+1 = 0�.

b = backorder cost rate at stage 1.
We denote this system as Series �N� �hi�Li�Ni=1� b�D�.
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It is well known that an echelon base-stock policy
is optimal for this system (see, e.g., Chen and Zheng
1994). Define the following state random variables in
equilibrium:
B = number of backorders at stage 1.
I ′j = installation inventory at stage j .
Tj = inventory in transit to stage j .
Ij = echelon inventory at stage j = I ′j +

∑j−1
i=1�Ti+ I ′i �.

INj = echelon net inventory level at stage j = Ij−B.
IOj = inventory on order at stage j .
IOPj = echelon inventory-order position at stage j =

INj + IOj .
IPj = echelon inventory-transit position at stage j =

INj +Tj .
Because stage N has ample supply from the out-

side supplier, IPN = IOPN . An echelon base-stock pol-
icy s= �s1� � � � � sN �, where sj is the echelon base-stock
level for stage j , j = 1� � � � �N , works as follows: We
monitor the echelon inventory-order position IOPj for
each stage j continuously. Whenever it falls below the
target level sj , we place an order from stage j + 1 to
bring it back to this target. Under any echelon base-
stock policy s, the key performance measures can be
evaluated as follows:

IPN = sN � (3)

INj = IPj −Dj� j = N� � � � �1� (4)

IPj = INj+1 ∧ sj� j = N −1� � � � �1� (5)

where u∧ v = min�u�v�. From these, and assuming
s0 = 0, we have

I ′j = INj − IPj−1� j = 1� � � � �N� (6)

B = �IN1�
−� (7)

Let

s∗j = optimal echelon base-stock level for stage j�
j = 1� � � � �N �

Then the optimal echelon base-stock policy s∗ =
�s∗1� � � � � s

∗
N � minimizes the long-run average sys-

temwide cost

C�s� = E

[
N∑
j=1

h′j I
′
j + bB+

N∑
j=2

h′jDj−1

]

= E

[
N∑
j=1

hjINj + �b+h′1��IN1�
−
]

(8)

among all s, and can be obtained through the fol-
lowing recursive optimization equations: Set C0�x� =
�b+h′1��x�−. For j = 1�2� � � � �N , given Cj−1, compute

Ĉj �x�= hjx+Cj−1�x�� (9)

Cj�y�= E�Ĉj �y−Dj��� (10)

s∗j = argmin�Cj�y��� (11)

Cj�x�= Cj
(
s∗j ∧x

)
� (12)

Here, each Cj�·� is a convex function with a finite mini-
mum point. The optimal systemwide average cost
C∗ = C�s∗�= CN �s∗N �.

Note that we can evaluate any base-stock policy by
simply skipping the optimization step in (11).

The relationships between installation and echelon
base-stock levels have been established in Axsäter
and Rosling (1993). Let s′∗j be the optimal installation
base-stock level at each stage j . Then, s′∗j = s∗j − s∗j−1

(with s0 = 0) if s∗j ≥ s∗j−1 for all j . In general, let s−j =
mini≥j �s∗i �, then the policy s∗ is equivalent to s−, and
we can set s′∗j = s−j − s−j−1 with s−0 = 0.

3. The Newsvendor Bounds
From the recursion (9)–(12), we can see that solv-
ing s∗1 is the same as solving a newsvendor problem
NV(h1� b+

∑N
i=2 hi�D1). Thus, from (2),

s∗1 = F −1
1

(
b+∑N

i=2 hi
b+∑N

i=1 hi

)
� (13)

However, obtaining s∗j , j = 2� � � � �N is not as sim-
ple. Minimizing Cj depends on all the previous cal-
culations for stages 1 through j − 1. Our goal is to
bound each Cj by a pair of newsvendor-type functions
and use their solutions to construct bounds for s∗j ,
j = 2� � � � �N . All proofs in this paper are in the
Appendix.

We first make the following important observation
based on (9)–(12):
Observation. For each stage j , the optimal echelon

base-stock level s∗j is completely independent of the
decisions at its upstream stages. More precisely, s∗j is
solely determined by b, h′1 =

∑N
i=1 hi, and �s∗i �Di�hi�

for i = 1� � � � � j . Thus, s∗j depends on the upstream
stages only through the sum of the echelon holding
cost rates at these stages,

∑N
i=j+1 hi; it does not depend

on s∗j+1� � � � � s
∗
N .
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This observation motivates the following concepts:
Definition 1. For any fixed j ≥ 1, we say a pol-

icy �s1� � � � � sj � is an echelon-j base-stock policy if at
each stage i, an echelon base-stock policy is fol-
lowed with echelon base-stock level si, i = 1� � � � � j .
An echelon-j manager is one who makes the echelon-j
base-stock level decisions based on the following
echelon-j information:

�j =
{
b� �Di�hi�

j
i=1�

N∑
i=j+1

hi� �s
∗
i �
j−1
i=1

}
� (14)

For any echelon-j base-stock policy �s∗1� � � � � s
∗
j−1�y�,

let I ′i �y� denote the local on-hand inventory at stage
i, i = 1� � � � � j , and B�y� the number of backorders at
stage 1. Then these random variables can be obtained
recursively according to (3)–(7), with N replaced by j ,
index j replaced by i, sj = y, and si = s∗i , i < j . We use
the argument y here to emphasize the dependence
on y. Using these expressions, we have the following
decomposition of Cj , which resembles (8) and plays a
pivotal role in the construction of the bounds. Denote
D̃j =

∑j
i=1Di.

Proposition 2. For each j ≥ 2, Cj�y� is the long-run
average cost for echelon-j if the echelon-j base-stock policy
�s∗1� � � � � s

∗
j−1�y� is followed, and

Cj�y�= !j +Gj�y�� (15)

where

!j = average in-transit holding cost from stage j
to stage 1

=
j∑
i=2

�hi+· · ·+hj�E�Di−1�=
j∑
i=2

hiE�D̃i−1�� (16)

Gj�y�= average holding/backorder cost at stages 1
through j under policy �s∗1� � � � � s

∗
j−1�y�

= E

[
hjI

′
j �y�+ �hj +hj−1�I

′
j−1�y�+· · ·

+
(

j∑
i=1

hi

)
I ′1�y�+

(
b+

N∑
i=j+1

hi

)
B�y�

]
� (17)

Proposition 2 implies that the echelon-j manager
is in effect responsible for the installation holding

cost rates hi + hi+1 + · · · + hj at stage i, i = 1� � � � � j ,
and a penalty cost rate b+∑N

i=j+1 hi at stage 1. Thus,
echelon-j has exactly the same structure as

Series

(
j� �hi�Li�

j
i=1� b+

N∑
i=j+1

hi�D

)
�

In other words, the echelon-j manager faces a sys-
tem that is truncated at stage j of the original system:
Everything else stays the same as in the original
except that the backorder cost rate is increased by∑N
i=j+1 hi, the sum of the echelon holding cost rates of

the truncated-off part—stages j+1 through N .
The increased backorder cost rate can be inter-

preted as follows. Although the unit holding cost rate
at stage 1 is h′1 = ∑N

i=1 hi, the total value added in
echelon-j is only

∑j
i=1 hi. Hence, for each unit sold, the

echelon-j manager perceives a gain of h′
1 −

∑j
i=1 hi =∑N

i=j+1 hi for the system. Consequently, if he cannot
satisfy a demand immediately, his perceived backo-
rder cost rate will be the original backorder cost b plus
the potential perceived gain

∑N
i=j+1 hi.

The decomposition of Gj in Proposition 2 inspires
our idea of bounding Gj by two newsvendor-type
functions. Essentially, the idea is to keep the backo-
rder cost rate at b+∑N

i=j+1 hi, but to replace the instal-
lation holding cost rates at different stages by a single
value. Under such a cost structure, there would be
no incentive to hold inventory at upper stages (i =
2� � � � � j), so echelon-j would be in effect collapsed
into a single-stage system.

More specifically, to form a lower bound cost,
we set this single value to be the minimum per-
ceived installation holding cost rate hj (see (17)).
In this way, we obtain a lower bound system
Series�j� �hi�Li�

j
i=1� b+

∑N
i=j+1 hi�D�, where hj = hj and

hi = 0 for i < j . Applying the same algebraic argument
that leads to (8), the average cost of any echelon-j
base-stock policy equals

E

[
j∑
i=1

hjI
′
i +

(
b+

N∑
i=j+1

hi

)
B+

j∑
i=2

hjDi−1

]

= E

[
j∑
i=1

hiINi+
((
b+

N∑
i=j+1

hi

)
+

j∑
i=1

hi

)
�IN1�

−
]

= E

[
hjINj +

(
b+

N∑
i=j+1

hi+hj
)
�IN1�

−
]
� (18)
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Clearly, the optimal policy for the lower bound sys-
tem is to allocate all inventory to stage 1. Condi-
tioning on IPj = IOPj = y, the optimal policy for the
lower bound system is the echelon-j base-stock policy
�y� � � � � y�y�. Under this policy, we have INj = y−Dj
and IN1 = y− D̃j . Then, (18) becomes

E

[
hj�y− D̃j �++

(
b+

N∑
i=j+1

hi

)
�y− D̃j �−

]
+hjE�D̃j−1�

#=Glj�y�+ !j� (19)

where !j = hjE�D̃j−1�. Because this is the optimal cost
for the lower bound system (conditioning on IPj = y),
and Cj�y� is bounded below by the cost of a particular
policy �s∗1� � � � � s

∗
j−1�y� in this lower bound system, we

have
Cj�y�=Gj�y�+ !j ≥Glj�y�+ !j �

Thus, Cj is bounded below by a newsvendor cost
function plus a constant.

Symmetrically, by charging the largest installation
holding cost rate

∑j
i=1 hi at each stage in echelon-j ,

we obtain an upper bound system. Conditioning on
IPj = y, the optimal policy for the upper bound
system is again the echelon-j base-stock policy
�y� � � � � y�y�, whose long-run average cost is

E

[(
j∑
i=1

hi

)
�y− D̃j �++

(
b+

N∑
i=j+1

hi

)
�y− D̃j �−

]

+
(

j∑
i=1

hi

)
E�D̃j−1� #=Guj �y�+ !̄j � (20)

where !̄j =
∑j
i=1 hiE�D̃j−1�. By construction, this cost

is an upper bound on the long-run average cost of
the same policy in the original system. On the other
hand, Cj�y� is a lower bound for the original system,
conditioning on IPj = y, as shown in Chen and Zheng
(1994). So,

Cj�y�=Gj�y�+ !j ≤Guj �y�+ !̄j �
That is, Cj is bounded above by a newsvendor cost
function plus a constant.

Observe that the constant !j (see (16)) is indepen-
dent of the choice of policies in the original system.
So, it is tempting to conjecture that Glj�y� ≤ Gj�y� ≤

Guj �y�. Because !j ≤ !j ≤ !̄j , the conjecture implies
tighter bounds. Theorem 3 below shows that this is
indeed true.

Obviously, the solutions of these bounding func-
tions are easy to obtain. The next question is, what
would be the relationship between these simple solu-
tions and the optimal echelon base-stock level s∗j ? The
answer is quite intuitive: Because the upper bound
function charges higher inventory cost than the orig-
inal system, there is less incentive to hold inventory;
therefore, its solution is likely to be a lower bound
for s∗j . Symmetrically, the solution of the lower bound
function is likely to be an upper bound for s∗j . In the
following, we formalize these results.

First, we set forth notation, some of which has been
defined earlier. Let
D̃j =

∑j
i=1Di = total leadtime demand in the subsys-

tem consisting stages 1 through j .
Fj �·�= cumulative distribution function of D̃j .

Guj �y� = E
[( j∑

i=1

hi

)
�y− D̃j �++

(
b+

N∑
i=j+1

hi

)
�y− D̃j �−

]
�

Glj �y�= E�hj�y− D̃j �++ �b+
∑N
i=j+1 hi��y− D̃j �−�.

Cuj �y�= !j +Guj �y�.
Clj �y�= !j +Glj�y�.

slj = argminGuj �·�= F −1
j

(
b+∑N

i=j+1 hi

b+∑N
i=1 hi

)
�

suj = argminGlj�·�= F −1
j

(
b+∑N

i=j+1 hi

b+∑N
i=j hi

)
�

Then, we have:

Theorem 3. For any given j and y,
(a) Gj�y� is bounded above and below by the cost func-

tions for NV(
∑j
i=1 hi� b+

∑N
i=j+1 hi� D̃j ) and NV(hj� b+∑N

i=j+1 hi� D̃j ), respectively. That is,

Glj�y�≤Gj�y�≤Guj �y��
(b) s∗j is bounded by the minimizers of Guj and Glj ; i.e.,

slj ≤ s∗j ≤ suj �
(c) Clj �y� ≤ Cj�y� ≤ Cuj �y�. In particular, the optimal

system cost C�s∗� satisfies

!N +GlN
(
suN
)≤ C�s∗�≤ !N +GuN

(
slN
)
�

(d) All the inequalities become equalities for j = 1.
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Figure 1 A Typical Graph for Echelon Cost Functions in a Four-Stage System
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Figure 1 is a typical graph of Cj , Cuj , and Clj for
a four-stage system. The system parameters are L1 =
L2 =L3 =L4 = 0�25, h1 = h2 = h3 = h4 = 0�25, %= 16, and
b = 25. It is clear that C1 = Cu1 = Cl1 and Cj is bounded
by Cuj and Clj for j = 2, 3, and 4.
Remark. Note that when applying this result

to periodic-review systems with i.i.d. demands,
one needs to be careful about the assumptions on
the sequence of events in a period. Most models
assume that inbound and outbound shipments occur
at the beginning of each period, while inventory-
backorder costs are assessed at the end of the period.
In this case, we need to consider one more period in
calculating D̃j . See an example in §6.

It is interesting to note that Cuj �y� coincides with the
upper bound function developed by Dong and Lee
(2001), based on a completely different idea. Using
the conventional dynamic programming formulation,
Dong and Lee inflate the induced penalty cost func-
tion to each stage j , j ≥ 2, by charging a penalty even
for sufficient stock. This is equivalent to replacing
(s∗j ∧x) by x in (12) for all j while keeping the rest of

the optimality recursion as is. Their approach is thus,
in effect, identical to that in Zipkin (2000) for the two-
stage system, which sets s∗j =� in (12).

4. The Heuristic and
Its Performance

There are several ways of constructing approxima-
tions of the optimal base-stock levels by applying
Theorem 3. For example:

(i) According to Theorem 3 (b), any convex combi-
nation of slj and suj ,

&slj + �1−&�suj � 0 ≤ &≤ 1� (21)

can be used to approximate s∗j . In principle, extensive
numerical experiments can be carried out to identify
effective values for &.

(ii) Alternatively, instead of working with the solu-
tion bounds, we can replace the coefficients of I ′i �y� in
(17) by a single convex combination of them to obtain
a newsvendor-type system (similar to the bounding
systems), and use its solution as the approximate
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solution. More specifically, this common coefficient
takes the form of

&jhj +&j−1�hj +hj−1�+· · ·+&1

j∑
i=1

hi� (22)

where 0 ≤ &k ≤ 1 and
∑j

k=1&k = 1. The corresponding
solution is

F −1
j

(
b+∑N

i=j+1 hi

b+∑N
i=j+1 hi+

∑j

k=1&k
∑j

i=k hi

)
�

Again, in principle, experiments can be carried out to
identify good choices of &k.

In this paper, we focus on one of these
possibilities—we use the simple average of the upper
and lower bound solutions to approximate the opti-
mal policy. Let saj denote the approximation for s∗j ,
Then,

saj =
�slj + suj �

2
≈ s∗j � j = 2�3� � � � �N � (23)

This corresponds to & = 1/2 in (21). Expressing in
terms of the original problem data,

saj =
1
2

[
F −1
j

(
b+∑N

i=j+1 hi

b+∑N
i=1 hi

)
+ F −1

j

(
b+∑N

i=j+1 hi

b+∑N
i=j hi

)]
�

j = 2�3� � � � �N � (24)

If the average is not an integer, we can either round
down or round up the value to obtain the nearest inte-
ger value for saj . The difference in performance of the
two methods is very small in most cases (see some
statistics in the discussion of Table 1). In general, when
b is small, say smaller than 39—a number observed
from our numerical experiments—truncation provides
a slightly better approximation. It seems that this
rule is independent of holding cost parameters in all
examples that we tested in this paper.

Recall that both Guj and Glj use the same backorder
cost rate as the original Gj . So, all three functions are
close to each other on the downward side of their
bowl-shaped curves. The main differences of the func-
tions are reflected on the upward side of the curves:
Guj increases the fastest and Glj the slowest. However,
it is not the speed of increase that determines the bot-
tom (the minimum) of the curve. Rather, it is when the

curve turns from downward to upward that matters.
Given that all these curves have similar downward
parts, and they all charge some positive inventory
costs, it is expected that they all “turn” about the
same time. This is why we can expect the approxi-
mation to work. Moreover, it is generally understood
that these inventory-backorder cost functions are flat
around the minimum. So, the increase in system cost
by using the approximation is expected to be small.

It turns out, however, that the average of the mini-
mum values of the two bounding functions at stage N ,
�CuN �s

l
N �+ClN �suN ��/2, is not a very accurate estimate for

optimal system cost. Instead, the upper bound CuN �s
l
N �

alone is a much better approximation. This is largely
because, for stage N , the lower bound function, which
charges the lowest installation holding cost rate for
all stages, becomes looser than the upper bound func-
tion. Therefore, we propose CuN �s

l
N � as a quick estimate

for the optimal system cost; i.e.,

CuN
(
slN
)≈ C�s∗�= CN (s∗N )� (25)

We discuss the effectiveness of this cost approxima-
tion in §5.

Recall that Cuj is in effect obtained by ignoring s∗j−1

in the optimality recursion. The good performance of
CuN �s

l
N � indicates that at optimality, the likelihood of

having extra inventory in each installation right after
the shipments is small (i.e., IPj−1 ≈ INj ).

We emphasize two aspects in evaluating the effec-
tiveness of the heuristic. First, we show that the differ-
ence between saj and s∗j is very small under different
system parameters. Second, we provide the percent-
age error on the optimal echelon cost to show the
effectiveness of the heuristic. The percentage error of
the heuristic is defined as

% error = C�sa�−C�s∗�
C�s∗�

×100%�

Table 1 compares the optimal and the heuristic poli-
cies fora four-stagesystemwithL1 = L2 = L3 = L4 = 0�25
and Poisson demand with %= 16. We change the cost
parameters to demonstrate the effectiveness of our
heuristic. We use the round-down rule to obtain inte-
ger values for saj in the b= 9 cases, and use the round-
up method in the b= 99 cases. In general, the heuristic
appears to perform better for larger b. When b= 9, the
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Table 1 Optimal and Heuristic Policies: Poisson Demand

b h1 h2 h3 h4 s∗1 s∗2/s
a
2 s∗3/s

a
3 s∗4/s

a
4 C�s∗�/C�sa� Error (%)

9 0	25 0	25 0	25 0	25 8 13/13 18/18 22/22 12.688/12.688 0	000
2	5 0	25 0	25 0	25 6 12/12 17/16 21/21 17.947/18.018 0	396
0	25 2	5 0	25 0	25 9 10/10 16/16 21/21 28.615/28.615 0	000
0	25 0	25 2	5 0	25 9 14/13 14/14 20/21 39.048/39.085 0	096
0	25 0	25 0	25 2	5 9 14/13 18/18 18/18 49.387/49.392 0	001
2	5 2	5 0	25 0	25 6 9/9 16/16 20/20 32.479/32.479 0	000
2	5 0	25 2	5 0	25 6 13/12 14/14 20/20 43.082/43.084 0	005
2	5 0	25 0	25 2	5 6 13/12 18/17 18/18 53.424/53.429 0	009
0	25 2	5 2	5 0	25 9 10/10 13/14 19/20 53.008/53.258 0	472
0	25 2	5 0	25 2	5 9 10/10 17/17 17/18 63.663/63.667 0	008
0	25 0	25 2	5 2	5 9 14/13 15/15 17/18 73.107/73.401 0	403
2	5 2	5 2	5 0	25 6 10/10 13/13 19/20 56.127/56.205 0	139
2	5 2	5 0	25 2	5 6 10/10 16/17 17/17 66.738/66.739 0	001
2	5 0	25 2	5 2	5 6 13/12 14/14 17/17 76.470/76.475 0	006
0	25 2	5 2	5 2	5 9 11/11 14/14 17/17 86.220/86.220 0	000
2	5 2	5 2	5 2	5 6 10/10 13/14 16/17 88.857/89.347 0	552

99 0	25 0	25 0	25 0	25 11 17/17 22/22 27/27 16.206/16.206 0	000
2	5 0	25 0	25 0	25 8 16/16 22/21 27/26 27.383/27.518 0	495
0	25 2	5 0	25 0	25 11 14/14 21/21 27/26 40.155/40.175 0	051
0	25 0	25 2	5 0	25 11 17/17 19/19 26/26 52.077/52.077 0	000
0	25 0	25 0	25 2	5 11 17/17 22/22 24/24 63.711/63.711 0	000
2	5 2	5 0	25 0	25 8 13/14 21/21 26/26 50.523/50.573 0	098
2	5 0	25 2	5 0	25 8 16/16 19/19 26/26 62.622/62.622 0	000
2	5 0	25 0	25 2	5 8 16/16 22/21 24/24 74.373/74.387 0	019
0	25 2	5 2	5 0	25 11 14/14 18/19 26/26 74.564/74.747 0	245
0	25 2	5 0	25 2	5 11 14/14 21/21 23/24 86.569/86.659 0	104
0	25 0	25 2	5 2	5 11 17/17 19/19 23/24 97.496/98.039 0	557
2	5 2	5 2	5 0	25 8 14/14 18/18 25/25 84.263/84.263 0	000
2	5 2	5 0	25 2	5 8 14/14 21/21 23/23 96.373/96.373 0	000
2	5 0	25 2	5 2	5 8 16/16 19/19 23/23 107.532/107.532 0	000
0	25 2	5 2	5 2	5 11 14/14 18/19 23/23 119.151/119.227 0	064
2	5 2	5 2	5 2	5 8 14/14 18/18 23/23 128.591/128.591 0	000

average percentage error to the optimal cost C�s∗� is
0.131% with the maximum percentage error 0.552%.
In 4 out of 16 cases, the heuristic solution coincides
with the optimal solution. When b = 99, the average
percentage error to the optimal cost is 0.102% with
the maximum percentage error 0.557%. In 8 out of 16
cases, the heuristic produces the true optimal solu-
tion. (The average and maximum percentage errors
are 0.646% and 2.28%, respectively, if rounding up is
used for b = 9, and 0.214% and 0.957% if rounding
down is used for b = 99.)

Because the analytical results apply equally to
periodic-review systems with i.i.d. demands, we
repeated the same experiment for a four-stage system
with negative binomial demands. The mean demand

in each period was 16 and its variance 32. In this
experiment, the optimal solutions showed the similar
pattern to those in Table 1. The heuristic coincided
with the optimal in 4 out of 16 cases. The largest
percentage error was 1.294% when b = 9 and 0.455%
when b= 99. The average percentage error was 0.23%.
Again, the heuristic performed better when b = 99.

We next examine the effectiveness of the heuristic
under different holding cost structures and different
number of stages. We demonstrate the performance
of the heuristic for N = 2�4�8�16�32, and 64 stages.
As for the choice of different holding cost forms, we
follow those used in Gallego and Zipkin (1999): lin-
ear, affine, kink, and jump holding costs. In particu-
lar, in the linear holding costs, hj = 1/N . For affine
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Figure 2 Different Holding Cost Forms
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holding costs, hN = &+ �1−&�/N and hj = �1−&�/N ,
j = 1�2� � � � �N − 1. Here, we compare & = 0�25 and
0.75 cases. The kink form is piecewise linear with two
pieces. We assume the system changes the holding
cost rate in the middle stage. Thus, the general format
of the kink holding costs is hj = �1− k�/N , j ≤ N/2
and hj = �1+k�/N , j > N/2. Here we also test k= 0�75
and 0.25 cases. The last one is the jump holding cost
form, where cost is incurred at a constant rate, except
for one stage with a large cost. We assume the jump
occurs at stage �N/2�+ 1. The general format is hj =
u+ �1−u�/N , j = N/2, and hj = �1−u�/N otherwise.
Figure 2 shows the different holding cost structures.
In addition, we assume leadtimes are equally divided
among stages and total system leadtime= 1. Also, the
total system holding cost h′1 is fixed and equal to 1.

Table 2 Optimal and Heuristic Policies: Linear and Jump Holding Costs

N Form C�s∗� C�sa� Error (%) Form C�s∗� C�sa� Error (%)

64 Linear 47.590 47.859 0.565 Jump 46.075 46.107 0.068
32 47.151 47.289 0.292 u= 0	75 45.217 45.231 0.031
16 46.265 46.335 0.151 43.500 43.518 0.042
8 44.529 44.555 0.059 40.069 40.080 0.028
4 41.015 41.015 0.000 33.188 33.204 0.047
2 33.916 33.916 0.000 19.370 19.389 0.100

The other system parameters are % = 64 and b = 39.
We use the rounding-up method in choosing the
integer values for the heuristic policy.

Tables 2–4 report the results. Not surprisingly, in
general the percentage error of the heuristic increases
as the number of stages N increases. This effect is
most obvious when the holding cost has the kink
form. However, the performance of the heuristic stays
surprisingly good, even for N = 64. With all the cost
forms and the numbers of stages tested, the worst
case of the percentage error is less than 1�3%. The
average percentage error is 0.174%.

Figures 3(a) and 3(d) demonstrate the optimal and
heuristic policies for a 64-stage system under the lin-
ear, jump, affine, and kink holding cost forms. These
figures demonstrate that saj is very close to s∗j in all
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Table 3 Optimal and Heuristic Policies: Affine Holding Costs

N Form C�s∗� C�sa� Error (%) Form C�s∗� C�sa� Error (%)

64 Affine 56	707 56	877 0.299 Affine 74.085 74.105 0.027
32 �= 0	25 56	12 56	14 0.036 �= 0	75 73.222 73.240 0.025
16 54	954 54	966 0.022 71.495 71.514 0.027
8 52	609 52	615 0.011 68.042 68.065 0.034
4 47	921 47	931 0.021 61.128 61.16 0.051
2 38	457 38	475 0.000 47.267 47.314 0.101

Table 4 Optimal and Heuristic Policies: Kink Holding Costs

N Form C�s∗� C�sa� Error (%) Form C�s∗� C�sa� Error (%)

64 Kink 52.352 52.742 0.745 Kink 61.622 62.378 1.227
32 k = 0	25 51.903 52.086 0.353 k = 0	75 61.157 61.610 0.741
16 51.011 51.099 0.174 60.226 60.510 0.472
8 49.223 49.259 0.073 58.381 58.484 0.177
4 45.660 45.660 0.000 54.675 54.773 0.179
2 38.457 38.457 0.000 47.267 47.314 0.101

cases. More importantly, all slj , s
u
j � and saj move in the

same pattern as s∗j . Similar results are found in the
affine and kink holding cost forms.

We finally examine the performance of the heuris-
tic when leadtimes are not equal. Consider a four-
stage benchmark system with L1 = L2 = L3 = L4 = 1�5,
h1 = h2 = h3 = h4 = 0�25, b = 39, and %= 4. We reduce
the leadtime from 1.5 to 0.5 units for stage 1, 2, 3, or
4, respectively.

Table 5 is the comparison of the optimal and heuris-
tic solutions and their corresponding costs. The max-

Figure 3 The Comparison of Heuristic and Optimal Policies
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imum percentage error to the optimal cost is only
0.004%. Thus, the heuristic policy is highly adap-
tive to the optimal one under different system para-
meters.

5. Parametric Analysis and
Managerial Insights

The simplicity of the bounding cost functions and the
closed-form expressions of the solution bounds and
the heuristic allow us to analyze the effect of system
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Figure 3 Continued
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parameters easily. This is in sharp contrast to the not-
so-transparent exact recursive procedure. Given the
good performance of the heuristic, and given the fact
that both s∗ and C∗ are “wrapped” by the bounds, it
is reasonable to believe the parametric effects on the
bounds hold for the true optimal policy and optimal
cost as well. This section is devoted to the parametric
analysis of the bounds and related managerial impli-
cations. When investigating the effect of changing one
parameter, we assume the other parameters remain
unchanged.

For convenience, denote the lower and upper
bound cost ratios as


lj =
b+∑N

i=j+1 hi

b+∑N
i=1 hi

� 
uj =
b+∑N

i=j+1 hi

b+∑N
i=j hi

� (26)

Thus, slj = F −1
j �


l
j � and suj = F −1

j �

u
j �, j = 1� � � � �N �

Table 5 Optimal and Heuristic Policies: Effect of Leadtimes

Leadtime s∗1 sl2 s∗2 sa2 su2 sl3 s∗3 sa3 su3 sl4 s∗4 sa4 su4 C�s∗� Error (%)

Benchmark 13 20 21 21 21 27 28 28 29 34 36 36 37 19.755 0.000
L1 = 0	5 6 15 16 16 16 22 24 23 24 29 31 31 32 15.198 0.000
L2 = 0	5 13 15 15 16 16 22 23 23 24 29 31 31 32 16.705 0.002
L3 = 0	5 13 20 21 21 21 22 23 23 24 29 31 31 32 18.011 0.000
L4 = 0	5 13 20 21 21 21 27 28 28 29 29 30 31 32 19.287 0.004

To see the magnitude of the changes, it is more con-
venient to work with normal distributions. For this
purpose, we approximate the leadtime demand D̃j by
a normal distribution with mean E�D̃j � and Var�D̃j �.
Let % be the demand arrival rate, and let Z denote
the demand batch size with mean , and variance -2.

Then, D̃j =
∑N �̃Lj �

k=1 Zk, where N �̃Lj� is the total number
of demand arrivals during L̃j �=

∑j
i=1 Li�, which has a

Poisson distribution with mean %L̃j . Zk is the batch
size of the kth demand, an independent copy of Z.
Thus,

E�D̃j �= %,L̃j�
Var�D̃j �= %�,2 +-2�̃Lj �

Let .�·� and /�·� denote standard normal pdf and
cdf, respectively, and define zlj = /−1�
lj � and zuj =
/−1�
uj �. Then, following the standard procedure (see
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Zipkin 2000, pp. 215–216), we have

slj = %,L̃j +zlj
√
%�,2 +-2�̃Lj� (27)

suj = %,L̃j +zuj
√
%�,2 +-2�̃Lj� (28)

saj = %,L̃j +
1
2

(
zlj +zuj

)√
%�,2 +-2�̃Lj� (29)

Cuj
(
slj
)= (

b+
N∑
i=1

hi

)
.
(
zlj
)√
%�,2 +-2�̃Lj

+
j−1∑
i=1

�hi+1%,L̃i�� (30)

Clj
(
suj
)= (

b+
N∑
i=j
hi

)
.�zuj �

√
%�,2 +-2�̃Lj

+
j−1∑
i=1

�hi+1%,L̃i�� (31)

The closed-form expressions of the approximate
echelon costs in (30) and (31) allow us to view the
echelon-j cost in two parts: (1) the safety-stock cost
due to the randomness of echelon-j leadtime demand
D̃j , and (2) the average holding cost of pipeline inven-
tory. Recall that we have excluded the average ship-
ping/processing cost from consideration.

5.1. Effect of Cost Parameters
From (26) it is easy to see that as hj increases, 
li
decreases for i ≥ j and increases for i < j . Also, as hj
increases, 
ui decreases for i= j , increases for i < j , and
remains unchanged for i > j . This implies the same
directional change for sli , s

u
i , and sai . On the other hand,

as b increases, all cost ratios increase, implying higher
values of all base-stock levels.

Examining the constructions of the bounding func-
tions, it is also easy to see that for any fixed y, as
either hj or b increases, Cli �y� and Cui �y� for all i
increase due to the increased coefficients. This in turn
leads to higher minimum values Cli �s

u
i � and Cui �s

l
i � for

all i. The same argument also applies to the decom-
position of the optimal cost Ci�y� for all i.

To summarize, we have:

Proposition 4. For j = 1�2� � � � �N ,
(a) As hj increases, s

l
i increases for i = 1� � � � � j − 1, but

decreases for i = j� � � � �N ; sui increases for i = 1� � � � � j−1,
decreases for i = j , and remains unchanged for i =
j+1� � � � �N .Consequently, sai increases for i= 1� � � � � j−1,
decreases for i = j� � � � �N .

(b) As b increases, sli , s
u
i , and s

a
i increase for all i.

(c) As either hj or b increases, C
l
i �s

u
i �, C

u
i �s

l
i �, and Ci�s

∗
i �

increase for all i. In particular, C∗ = C�s∗� increases.
Thus, roughly speaking, increasing the local hold-

ing cost rate at one stage leads to increased down-
stream echelon base stocks but decreased upstream
(including that stage itself) echelon base stocks. How-
ever, the optimal system cost always increases. Also,
as the backorder cost rate increases, the optimal ech-
elon base-stock levels all increase, leading to both
increased system stock and increased system cost.

From the normal approximation, we can see that
the cost parameters affect the optimal policies only
through the ratios 
lj and 
uj , which determine zlj and
zuj , while affecting the optimal cost with an additional
factor b+∑N

i=j+1 hi.
We now illustrate these properties by some numer-

ical examples. Figure 4(a) is a four-stage system with
the Poisson demand. The system parameters are h1 =
h2 = h3 = h4 = 0�25, L1 = L2 = L3 = L4 = 0�25, % = 16.
We range b from 9 to 99. It is clear that as b increases,
Cu4 �s

l
4�, C

∗, and Cl4�s
u
4 � are increasing. Notice that C∗ is

closer to Cu4 �s
l
4� when b is smaller. This is not intuitive

because when b is sufficiently large, the serial system
will allocate more stocks to stage 1 (to avoid high
penalty cost) so that the system should perform more
like a NV(h′1� b�D4) system.

Figure 4(b) is the same system with b = 99, but
we range h′1 from 1 to 8. We assume each hj =
0�25h′1. Again, as h′1 increases, Cu4 �s

l
4�, C

∗, and Cl4�s
u
4 �

all increase. In this case, C∗ is also closer to Cu4 �s
l
4�

when h′1 is smaller. Note that if the average ship-
ment/precessing cost were included in the total cost
expression, the performance of the approximation
would be more attractive, as shown in Dong and Lee
(2001).

The following proposition can be easily verified
from Equations (27) and (28). It identifies the condi-
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Figure 4 Optimal and Heuristic Costs
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tions under which the difference between the bounds
is smaller so the heuristic is more accurate.

Proposition 5. Using normal approximation, as hj
increases, the distance between sli and sui will be larger
for i = j + 1� j + 2� � � � �N , and will be smaller for i =
2�3� � � � � j . In particular, when hN � hN−1 �· · ·� h1, the
difference between slj and s

u
j is very small. On the contrary,

when hN � hN−1 � · · · � h1, then the bounds for s∗j are
loose.

From Proposition 5 we can speculate that CuN �s
l
N �

approximates C∗ well if hN is large relative to the
other echelon holding costs. In this case, according to
the proposition, the gap between slN and s∗N is small.
Because there is less incentive to hold inventory at
stage N due to its higher holding cost, a serial sys-
tem will perform just like a newsvendor system. For
example, in the above four-stage system (Figure 4(b)
system), if h4 = 10, h3 = 1, h2 = 1, and h1 = 1, then C∗ =
222�367 and Cu4 �s

l
4� = 223�382 (error ≈ 0). However, if

h4 = 5, h3 = 4, h2 = 3, and h1 = 1, then C∗ = 192�417
and Cu4 �s

l
4�= 195�382 (error = 1�54%).

Note that holding costs consist of several com-
ponents, such as cost of capital, facility, mainte-
nance, and leakage/spoilage. Holding costs can be
reduced by introducing new technology, through bet-
ter management, or by outsourcing. To better allo-
cate resources, it is interesting to know which stage
can lead to the greatest benefit of holding cost reduc-
tion. This is equivalent to identifying the bottleneck
stage such that by reducing its echelon holding cost
the total optimal cost is minimized. Let CuN �y � hj�
�ClN �y � hj�� be the system upper (lower) bound cost
function when echelon holding cost rate at stage j
is hj . Proposition 6 provides insights on this issue.

Proposition 6. Consider an N -stage system. Define
1hjC

u
N = minCuN �y � hj� − minCuN �y � hj − 1h� and

1hjC
l
N = minClN �y � hj�−minClN �y � hj −1h�. Then we

have
(a) 1h1

CuN ≤ 1h2
CuN ≤ · · · ≤ 1hN CuN ,

(b) 1h1
ClN ≤ 1h2

ClN ≤ · · · ≤ 1hN ClN , provided b ≥ hN .
Proposition 6 implies that reducing echelon holding

cost at stage N is most effective. Because the optimal
cost is bounded by ClN and CuN , we conjecture that it is
also the most effective to reduce holding cost at stage
N for CN . The following numerical example demon-
strates this point.

Consider a four-stage benchmark system with L1 =
L2 = L3 = L4 = 0�25, h1 = h2 = h3 = h4 = 2�5, b = 99, and
% = 16. In this case, we reduce the holding cost from
2.5 to 0.25 for stage 1, 2, 3, or 4, respectively. Tables 6
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Table 6 Optimal and Heuristic Solutions: Holding Cost Reduction

Leadtime s∗1 sl2 s∗2 sa2 su2 sl3 s∗3 sa3 su3 sl4 s∗4 sa4 su4 C�s∗� C�sa�

Benchmark 8 13 14 14 14 17 18 18 19 21 23 23 24 128	591 128	591
h1 = 0	25 11 14 14 14 14 18 18 19 19 22 23 23 24 119	151 119	227
h2 = 0	25 8 14 16 16 17 18 19 19 19 22 23 23 24 107	532 107	573
h3 = 0	25 8 13 14 14 14 18 21 21 23 22 23 23 24 96	373 96	373
h4 = 0	25 8 13 14 14 14 17 18 18 19 22 25 25 28 84	263 84	263

and 7 are the optimal and heuristic (rounding-up)
solutions and their corresponding costs.

From the optimal solution in Table 6, we notice
that s∗j increases when the holding cost reduction occurs
at stage j , but the other optimal echelon base-stock levels
remain stable (except when h2 = 0�25, both s∗2 and s∗3
increase). Thus, when hj decreases, there is an inven-
tory shift between stage j and all its upstream stages—
while the local inventory at stage j increases, the total
amount of inventory holding at stage j + 1� � � � �N
tends to decrease. For example, in the benchmark case
the optimal installation base-stock level (s∗1� s

′∗
2 � s

′∗
3 � s

′∗
4 )

is (8, 6, 4, 5). When h2 decreases from 2.5 to 0.25, the
optimal installation policy is �8�8�3�4�.

In Table 7, the benchmark example has the largest
average cost of 128.591, which includes !4 = 60 and
G4�s

∗
4�= 68�597. As we reduce the holding cost on h1,

h2, h3, and h4, the optimal cost is decreased to 119.151,
107.532, 96.373, and 84.263, respectively. Note that this
decreased optimal cost occurs on both !4 and G4�s

∗
4�.

On the other hand, the heuristic cost Cl4�s
u
4 � and Cu4 �s

l
4�

are both decreasing in the same pattern as well, but
the decreased cost only occurs at !4. Nevertheless, we
can still identify the bottleneck stage through the com-
parison of all Cl4�s

u
4 � or Cu4 �s

l
4� values. Thus, reduction

of holding cost at upper stages is more effective than at
lower stages.

In fact, we can intuitively determine the effect of
reduction on the echelon holding cost. If we can only

Table 7 Optimal and Heuristic Costs: Holding Cost Reduction

Leadtime �4 Gl
4�s

u
4� Gu

4�s
l
4� G4�s

∗
4� Cl

4�s
u
4� Cu

4 �s
l
4� C∗ = C�s∗�

Benchmark 60 25	217 75.675 68.591 85.217 135	675 128	591
h1 = 0	25 60 25	217 62.120 59.151 85.217 122	12 119	151
h2 = 0	25 51 25	217 62.120 56.532 76.217 113	120 107	532
h3 = 0	25 42 25	217 62.120 54.373 67.217 104	120 96	373
h4 = 0	25 33 3	437 62.120 51.263 36.437 95	120 84	263

reduce a fixed amount of echelon holding cost for any
stage, it is intuitive that reducing the echelon hold-
ing cost at stage N will be the most effective, because
every unit of inventory that enters into this serial sys-
tem will be beneficial from cost reduction. Take the
above four-stage system for example; if we reduce h4

from 2.5 to 0.25, then every unit from stage 4 to stage
1 will be beneficial from cost reduction. If we reduce
h3, then some inventories at stage 4 cannot take the
advantage of h3 reduction.

5.2. Effect of Leadtimes
For any j , if Lj increases, D̃j becomes stochastically
larger, leading to stochastically larger D̃i for all i ≥ j
and leaving D̃i unchanged for i < j . This implies
increased sli , s

u
i , and sai for i ≥ j while leaving those

quantities unchanged for i < j . See Song (1994). The
effect on the cost bounds is not easy to see by using
the stochastic comparison technique. It is, however,
quite transparent from the normal approximation (30)
and (31). To summarize, we have:

Proposition 7. As Lj , j = 1�2� � � � �N , increases,
(a) sli , s

u
i , and s

a
i increase for i = j� � � � �N , but remain

the same for i = 1� � � � � j−1.
(b) Using normal approximation, both the lower and

upper bounds for the optimal system costs, ClN �s
u
N � and

CuN �s
l
N �, increase.

Next, we address the following question: If we can
reduce one unit of leadtime, at which stage should we
perform the reduction to achieve the maximum cost
savings?

Let CuN �y � Lj� (ClN �y � Lj�) be the system upper
(lower) bound cost function when leadtime at stage j
is Lj .

Proposition 8. Consider an N-stage system. Define
1LjC

u
N = minCuN �y � Lj� − minCuN �y � Lj − 1L� and
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1LjC
l
N = minClN �y � Lj�−minClN �y � Lj −1L�. Then we

have
(a) 1L1

CuN ≥ 1L2
CuN ≥ · · · ≥ 1LN CuN , and

(b) 1L1
ClN ≥ 1L2

ClN ≥ · · · ≥ 1LN ClN .
This implies that according to the heuristic solution,

stage 1 is the bottleneck stage for leadtime reduction.
Because the optimal system cost C∗ is bounded by
ClN �s

u
N � and CuN �s

l
N �, we expect this conclusion will also

apply to the optimal cost C∗. Indeed, in Table 5, as
we shorten the leadtimes L1, L2, L3, and L4 by the
same amount, the optimal cost is decreased from the
benchmark 19.755 to 15.198, 16.705, 18.011, and 19.287,
respectively. Thus, reduction of leadtime at lower stages
is more effective than at upper stages.

5.3. Effect of Demand Variability
Suppose we face a more variable demand size, Z′,
than Z in the sense of increasing convex ordering, i.e.,
Z′ ≥ic Z (see, e.g., Ross 1983), but E�Z′�=E�Z�. That is,
E�g�Z′�� ≥ E�g�Z�� for all convex g�·�. In particular,
Var�Z′� ≥ Var�Z�. Then it can be shown that D̃′

j ≥ic D̃j
for all j , where D̃′

j is the counterpart of D̃j with batch
size Z′. Applying the results in Song (1994) and the
normal approximation, we have

Proposition 9. If the demand batch size Z is more
variable but has the same mean, then

(a) both the lower and upper bounds for the optimal sys-
tem costs, ClN �s

u
N � and C

u
N �s

l
N �, increase, and

(b) using normal approximation, sli , s
u
i , and s

a
i increase

for all i due to increased - .

Because system optimal cost and optimal solution
s∗j both increase in demand variability, more inventory
should be held when demand variance increases. A
natural question is, how should we allocate additional
units of inventory to mitigate the increased cost? This
question is equivalent to examining the optimal instal-
lation base-stock levels. The reason is that we should
always allocate additional inventory to the stage with
the maximum increase in optimal installation base-
stock levels when the demand variability increases.
Because it is not possible to obtain a closed-form solu-
tion for optimal installation base-stock levels, we can
examine their behaviors through our heuristic.

We first provide a proposition to summarize our
findings. Let superscript “ ′ ” denote the installation
terms for all variables. Define 1s′lj = s′lj �- + 1-�−

s′lj �-�, 1s′uj = s′uj �- + 1-� − s′uj �-�, and 1s′aj =
s′aj �- +1-�− s′aj �-�. We can conclude the following
results.

Proposition 10. For an N -stage system, assume all
leadtimes are equal. Then

(a) 1s∗1 ≥ 1s′lj , for j = 2� � � � �N , and
(b) 1s∗1 ≥ 1s′uj , for j = 2� � � � �N , if b� h

′
1 or h1 ≤ hj ,

for j = 2� � � � �N .

Perhaps it is not possible that hN ≥ hN−1 ≥ · · · ≥ h1 in
the serial systems. However, the backorder cost rate is
generally much larger than the holding cost parame-
ters. Therefore, from the heuristic, stage 1 is the bottle-
neck stage when demand variance increases, because
s∗1 increases faster than both lower and upper bound
solutions for upper stages. We verify this conclusion
through a numerical example below.

Consider the following four-stage system with neg-
ative binomial demand. The system parameters are
h1 = h2 = h3 = h4 = 0�25, L1 = L2 = L3 = L4 = 0�25, b = 9.
We fix the mean of demand to 16 and change the
variance from 20, 24, 36, 48, and to 80. Figures 5(a)
through 5(d) show the optimal and heuristic echelon
and installation base-stock levels.

From Figure 5(a), when the demand variance
increases, the optimal echelon base-stock levels
increase for all stages because of the increasing base-
stock level at stage 1. However, the increase in instal-
lation inventory at stage 1 is higher than that at the
other stages. It can be illustrated in Figure 5(b). In
this graph, the installation base-stock level at stage 2,
3, or 4 is relatively stable, but increases dramatically
at stage 1 as demand variance increases. Figures 5(c)
and 5(d) are the heuristic solutions in this example.
Clearly, we can also draw the same conclusion as
above from the heuristic.

6. Incentives and Cooperation in
Decentralized Supply Chains

So far, we have focused only on the centralized
control mechanism—a central planner or an owner
knows the information for the entire system and cal-
culates the optimal base-stock level for each stage
(e.g., division), assuming the division manager would
follow this policy to control local inventory. In real-
ity, however, without appropriate incentives division
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Figure 5 The Effect of Demand Variance to Optimal Base-Stock Levels

(a) Optimal Echelon Solution (b) Optimal Installation Solution
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managers may pursue their own benefits and oper-
ate according to local optimal policies, which may not
lead to optimal system performance. It is therefore
important to identify incentive-compatible schemes
to facilitate coordination so that, while each division
manager minimizes her own cost, the team as a whole
would achieve the system optimality. Several authors
have proposed possible ways to accomplish this, such
as Chen (1999), Lee and Whang (1999), and Porteus
(2000). In this section, we relate our results to some of
these works.

First, the results developed in the paper can be
used to simplify the calculation of Chen’s incentive-
compatible scheme, which is based on the accounting
inventory levels (the installation inventory levels that
would be experienced if the stage had an ample sup-
ply). We use the stationary beer game in Chen (1999)
as an example to illustrate this.

In the stationary beer game, there are four stages.
Stages 1 through 4 are referred to retailer, whole-
saler, distributor, and factory, respectively. Stage j has
a delivery leadtime Lj and information leadtime lj ,
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where Lj = 2 for all j , l4 = 1, and lj = 2 for j < 4.
Each stage implements an installation base-stock pol-
icy. Demand at stage 1 is normally distributed with
,= 50, - = 10. Echelon holding cost rates are hj = 0�25
for all j ; backorder cost rate is b = 10. Chen shows
that the information leadtimes can be treated as the
transportation leadtimes when searching for the opti-
mal policies. As mentioned in §3, because inventory
costs are assessed at the end of each period in the
beer game, the accumulated leadtimes used in our
heuristic should be L̃1 = 5, L̃2 = 9, L̃3 = 13, and L̃4 = 16.
Table 8 shows the optimal policy and cost as well as
the newsvendor approximation. The relative error of
the heuristic is less than 0.05%. (Here, we take the
information leadtime as the physical transportation
leadtime so that the optimal cost is 399.501 rather than
65 as mentioned in Chen. Also, there is a discrepancy
on s∗4 solution: Our answer is 862 rather than 863 as
reported in the same paper.)

The incentive-compatible scheme introduced in
Chen works as follows. Suppose the optimal installa-
tion policy is (s′∗1 � � � � � s

′∗
N ). Assume each division j has

an ample supply. Because the holding cost rate is hj
and demand information is known to every division,
the division manager would choose s′∗j to minimize
his own cost if his backorder cost rate is bj , where

bj =
hj4j�s

′∗
j �

1−4j�s′∗j �
� (32)

and 4j�·� is the cdf of Dj . Therefore, the owner only
needs to tell each division manager j a set of holding
and backorder cost rates (hj� bj ). As a result, the entire
system operates optimally.

Note that in implementing this scheme, the key
is devising bj , for which the owner first needs to
compute (s′∗1 � � � � � s

′∗
N ) recursively from the optimality

recursion. By replacing s′∗j with s′aj in (32), the entire
calculation can be simplified substantially, without

Table 8 The Stationary Beer Game Solutions

Stage slj s∗j saj suj s′∗j s′aj C�s∗� C�sa�

j = 1 295 295 295 295 295 295 — —
j = 2 501 505 505 510 210 210 — —
j = 3 704 711 713 722 206 208 — —
j = 4 854 862 866 879 151 153 399.501 399.667

involving any recursion. Continuing the stationary
beer game example, the installation base-stock lev-
els �s′∗1 � s

′∗
2 � s

′∗
3 � s

′∗
4 �= �295�210�206�152�. From (32), the

incentive-compatible penalty rates are �b1� b2� b3� b4�=
�10�75�0�5603�0�4043�0�3006�. By using s′aj in (32), we
have �ba1� b

a
2� b

a
3� b

a
4� = �10�75�0�5603�0�4755�0�3297�.

Now, with the set of holding and backorder cost
rates �hj� baj �

4
j=1, the division managers will choose the

heuristic solution �s′a1 � s
′a
2 � s

′a
3 � s

′a
4 �= �295�210�208�153�.

Thus, our heuristic yields an easy-to-compute and
near-optimal incentive scheme, under which the over-
all system cost is only slightly higher than the optimal
cost.

Porteus (2000) proposes responsibility tokens as
a way to implement the decentralized supply-chain
coordination scheme of Lee and Whang (1999), which
in turn can be viewed as proposing a way to
operationalize the decentralized management scheme
implicit in Clark and Scarf (1960). If we revise the
original scheme of Porteus by sending all tokens all
the way to stage 1, then the backorder cost incurred
at stage 1 will be completely transferred/charged to
stage N . Thus, there would be no incentive for stage
N − 1 to stage 1 to hold inventories. As a result, the
original N -stage system would be collapsed into a
single-stage system where the holding cost rate is
hN , backorder cost rate is b, leadtime demand is D̃N ,
and the echelon-N manager has full responsibility for
the inventory in the entire system. The resulting cost
function is exactly the same as ClN , the lower bound
cost function at stage N . Similarly, by replacing hN
with

∑N
i=1 hi in the above scheme, we can obtain CuN .

7. Concluding Remarks
In this paper, we have developed an easily imple-
mentable heuristic to the optimal echelon base-stock
levels for an N -stage serial system by solving 2N
single-stage newsvendor-type problems. The analysis
and the closed-form expressions revealed insights into
the key drivers of the optimal policy. It sheds light on
how system parameters are interrelated, and the cor-
responding physical meanings. We observe that the
cost parameters determine the shape of the echelon
cost functions, while the leadtimes and the demand
rate mainly influence the position of the echelon cost
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functions. The results presented in this paper will ease
the classroom teaching and real-world implementa-
tion. They also allow us to derive various managerial
insights which would be difficult, if not impossible,
to obtain analytically from the exact algorithm.

The results developed here can be easily adapted
for assembly systems, following the approach of
Rosling (1989) to convert an assembly system into
an equivalent serial system. Future research direc-
tions will include extending the analysis to systems
with other structures, such as the general �Q� r� sys-
tems, the distribution systems, as well as systems with
nonstationary demands.
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Appendix
Proof of Proposition 2. For a given IPj = y at stage j and the

known s∗1� � � � � s
∗
j−1, then

Cj�y� = E�hj INj +Cj−1�IPj−1� � IPj = y�
= E�hj INj +hj−1INj−1 +Cj−2�IPj−2� � IPj = y�
= · · ·

= E
[ j∑
i=2

hiINi+C1�IP1� � IPj = y
]

= E
[ j∑
i=1

hiINi+ �b+h′1��IN1�
− � IPj = y

]

= E
[ j∑
i=1

hiIi+
(
b+h′1 −

j∑
i=1

hi

)
B � IPj = y

]

= E
[ j∑
i=1

hi

( i∑
k=1

I ′k+
i−1∑
k=1

Dk

)
+
(
b+

N∑
i=j+1

hi

)
B � IPj = y

]

= E
[
hj I

′
j + �hj +hj−1�I

′
j−1 +· · ·+

( j∑
i=1

hi

)
I ′1

+
(
b+

N∑
i=j+1

hi

)
B � IPj = y

]
+ !j � �

Proof of Theorem 3. Because part (a) follows immediately from
part (c), and part (d) follows immediately from (13), we only need
to prove parts (b) and (c).

We first prove (b) by induction. To show s∗j ≤ suj , it is sufficient
to show 1Gj�y�≥1Glj �y� or, equivalently, 1Cj�y�≥1Clj �y�, for all y
and j ≥ 1. Note that

1Clj �y�= hj −
(
b+

N∑
i=j
hi

)
P�D̃j > y��

When k = 1, from (d), 1C1�y�= 1Cl1�y�. Assuming k = j−1 is true,
i.e., 1Cj−1�y�≥ 1Clj−1�y�. When k = j ,

Cj�y�= E�hj �y−Dj�+Cj−1�s
∗
j−1 ∧ �y−Dj����

Conditioning on Dj = dj , if s∗j−1 ≤ y−dj ,

1Cj�y � dj �= hj ≥ hj − �b+hj �P�D̃j−1 > y−dj �= 1Clj �y � dj �� (A1)

If s∗j−1 > y−dj (so s∗j−1 ≥ y+1−dj ),

1Cj�y � dj � = hj +Cj−1�y+1−dj �−Cj−1�y−dj �
= hj +1Cj−1�y−dj �
≥ hj +1Clj−1�y−dj � (by induction assumption)

= hj +hj−1 −
(
b+

N∑
i=j−1

hi

)
P�D̃j−1 > y−dj �

= hj −
(
b+

N∑
i=j
hi

)
P�D̃j−1 > y−dj �

+hj−1�1−P�D̃j−1 > y−dj ��
= 1Clj �y � dj �+hj−1�1−P�D̃j−1 +dj > y��
≥ 1Clj �y � dj �� (A2)

Therefore, from (A1) and (A2), we have

1Cj�y�≥ 1Clj �y��

Thus, by induction, we know 1Cj�y�≥ 1Clj �y� for all j and s∗j ≤ suj .
We next show s∗j ≥ slj . Similarly, we need to show 1Cuj �y� ≥

1Cj�y�. Below we show 1Cuk �y� ≥ 1Ck�y� ≥ 1Ck�y� for k ≥ 1 by
induction.

For k = 1, because Cu1 �y� = C1�y�, the first inequality is immedi-
ate. To see the second inequality, note that

if y ≤ s∗1� then C1�y�= C1�y�� so 1C1�y�= 1C1�y�� (A3)

and
if y > s∗1� then C1�y�≥ C1�y�� so 1C1�y�≥ 1C1�y�� (A4)

Hence, we have 1Cu1 �y�≥ 1C1�y�≥ 1C1�y�.
Assume k= j−1 is true; i.e., 1Cuj−1�y�≥ 1Cj−1�y�≥ 1Cj−1�y�. For

k = j ,

Cj�y� = E�hj �y−Dj�+Cj−1�y−Dj��

and

Cuj �y� = E�hj �y−Dj�+Cj−1�y−Dj���
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so the derivatives of Cj�y� and Cuj �y� can be expressed as

1Cj�y� = hj +E�1Cj−1�y−Dj��
and

1Cuj �y� = hj +E�1Cj−1�y−Dj���

Applying the second inequality in the induction assumption, we
have

E�1Cj−1�y−Dj��≥ E�1Cj−1�y−Dj���
Therefore,

1Cuj �y� = hj +E�1Cj−1�y−Dj��
≥ hj +E�1Cj−1�y−Dj��= 1Cj�y�� (A5)

Finally, by replacing subscript 1 with subscript j in (A3) and
(A4), we have 1Cj�y� ≥ 1Cj �y� for every y. As a result, together
with (A5), we have 1Cuj �y�≥1Cj�y�≥1Cj �y�. That is, slj ≤ s∗j for all
j ≥ 1.

We proceed to show (c). We first show that Clj �y�≤Cj�y� for all j .
Note that from Proposition 2, when y = 0, E�I ′i �= 0 for all i ≤ j and
E�B�= E�D̃j �. So,

Cj�0� = !j +Gj�0�= !j +
(
b+

N∑
i=j+1

hi

)
E�D̃j �= !j +Glj �0�= Clj �0��

Therefore,

Cj�y� = Cj�0�+
y−1∑
x=1

1Cj�x�

≥ Clj �0�+
y−1∑
x=1

1Clj �x�

= Clj �y��

Finally, we show Cj�y� ≤ Cuj �y� for all j . Recall s∗j−1 =
argminCj−1�y� for all j . So

Cj�y� = E�hj �y−Dj�+Cj−1�s
∗
j−1 ∧ �y−Dj��� (A6)

≤ E�hj �y−Dj�+Cj−1�y−Dj�� (A7)

= E
[
hj �y−Dj�+hj−1�y−Dj −Dj−1�

+Cj−2

(
s∗j−2 ∧ �y−Dj −Dj−1�

)]
≤ E�hj �y−Dj�+hj−1�y−Dj −Dj−1�

+Cj−2�y−Dj −Dj−1��

= · · ·

= E
[ j∑
i=2

hi

(
y−

j∑
k=i
Dk

)
+C1

(
s∗1 ∧

(
y−

j∑
i=2

Di

))]

≤ E
[ j∑
i=2

hi

(
y−

j∑
k=i
Dk

)
+C1

(
y−

j∑
i=2

Di

)]

=
j∑
i=2

hiE�D̃i−1�+E
[( j∑

i=1

hi

)
�y− D̃j �+ �b+h′1��y− D̃j �−

]
= !j +Guj �y�

= Cuj �y�� �

Proof of Proposition 6. From Equations (30) and (31), we have

1hj C
u
N =

[(
b+

N∑
i=1

hi

)
.

(
/−1

(
b

b+∑N
i=1 hi

))

−
(
b+

N∑
i=1

hi−1h
)
.

(
/−1

(
b

b+∑N
i=1 hi−1h

))]
×
√
%�,2 +- 2 �̃Lj +1h%,L̃j−1�

Hence,
1hj C

u
N −1hj+1

CuN = 1h%,�̃Lj−1 − L̃j � < 0

so 1hj+1
CuN > 1hj C

u
N , for j = 1� � � � �N −1.

On the other hand,

1hj C
l
N =

[
�b+hN �.

(
/−1

(
b

b+hN

))
− �b+hN �.

(
/−1

(
b

b+hN

))]
×
√
%�,2 +- 2 �̃Lj +1h%,L̃j−1

= 1h%,L̃j−1 for j < N � (A8)

Thus,

1hj C
l
N > 1hj−1

ClN for j = 1� � � � �N −1� (A9)

For j = N ,

1hN C
l
N =

[
�b+hN �.

(
/−1

(
b

b+hN

))
− �b+hN −1h�.

(
/−1

(
b

b+hN −1h
))]

×
√
%�,2 +- 2 �̃Lj +1h%,L̃j−1� (A10)

Because b ≥ h,

/−1

(
b

b+hN −1h
)
≥/−1

(
b

b+hN

)
≥ 0�5�

Thus,

.

(
/−1

(
b

b+hN

))
≥ .

(
/−1

(
b

b+hN −1h
))

≥ 0�

and hence (A10) ≥ (A8), or equivalently,

1hN C
l
N ≥ 1hj Clj for j < N � (A11)

From (A9) and (A11), the results in Proposition 6 immediately
follow. �
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Proof of Proposition 8. From Equations (30) and (31), we
obtain

1Lj C
u
N = 1L

( N∑
i=j+1

hi

)
%,

+
(
b+

N∑
i=1

hi

)
.
(
zlN
)√
%�,2 +- 2�

[√
L̃N −

√
L̃N −1L

]
�

Therefore, 1Lj+1
CuN −1Lj CuN < 0 for j = 1� � � � �N − 1. Similarly, we

can show 1Lj+1
ClN −1Lj ClN < 0 for j = 1� � � � �N − 1 in the same

manner. �

Proof of Proposition 10. For notational simplicity, denote
1-̂ =√,2 + �- +1-�2−√,2 +- 2. Because all leadtimes are equally
divided, we can change L̃j to jL, where L is the leadtime for each
stage. We first prove part (a). From Equation (27), we obtain

s∗1 �-� = %,L̃1 +zl1
√
%�,2 +- 2 �̃L1�

and
s′lj �-� = slj − slj−1

= %,Lj +
√
%�,2 +- 2�L

(
zlj
√
j−zlj−1

√
j−1

)
�

Thus, we have

1s∗1 = zl1
√
%L1-̂

and
1s′lj = √

%L
(
zlj
√
j−zlj−1

√
j−1

)
1-̂�

Note that zl1 ≥ zlj , for j = 2� � � � �N , thus

1s∗1 = √
%Lzl1�1�1-̂

≥ √
%Lzl1�

√
j−√j−1�1-̂

≥ √
%Lzlj �

√
j−√j−1�1-̂

= √
%Lzlj

√
j1-̂ −√

%Lzlj
√
j−11-̂

≥ √
%Lzlj

√
j1-̂ −√

%Lzlj−1

√
j−11-̂

= 1s′lj �

Therefore, part (a) is proved.
A similar proof works for part (b). However, to guarantee zu1 ≥ zuj

for j = 2� � � � �N , the condition of h1 ≤ hj for j = 2� � � � �N must hold.
Also, when b is sufficiently large, zu1 ≈ zu2 ≈ · · · ≈ zuN . Hence the result
of part (b) still holds. �
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