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This paper studies a periodic-review, serial inventory system in which echelon �r� nQ�T � policies are implemented. Under
such a policy, each stage reviews its inventory in every T period and orders according to an echelon �r� nQ� policy.
Two types of fixed costs are considered: one is associated with each order batch Q, and the other is incurred for each
inventory review. The objective is to find the policy parameters such that the average total cost per period is minimized.
This paper provides a method for obtaining heuristic and optimal policy parameters. The heuristic is based on minimizing
lower and upper bounds on the total cost function. These total cost bounds, which are separable functions of the policy
parameters, are obtained in two steps: First, we decompose the total cost into costs associated with each stage, which
include a penalty cost for holding inadequate stock. Second, we construct lower and upper bounds for the penalty cost by
regulating downstream policy parameters. To find the optimal solution, we further construct cost bounds for each echelon
(a subsystem that includes a stage and all of its downstream stages) by regulating holding and backorder cost parameters.
The echelon lower-bound cost functions, as well as the stage cost bounds, generate bounds for the optimal solution. In a
numerical study, we find that the heuristic is near optimal when the ratio of the fixed cost to the holding cost at the most
downstream stage is large. We also find that changing the optimal batch sizes may not affect the optimal reorder intervals
or, equivalently, the delivery schedules under some conditions.
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1. Introduction
In production and distribution systems, materials are often
ordered in batches, such as cases and pallets, at fixed
intervals. For instance, most manufacturers order batches
of materials from suppliers when they run their material
requirements planning (MRP) systems. MRP systems often
run on weekly, biweekly or monthly schedules, resulting in
periodic batch-ordering from suppliers. Large retail chains
replenish inventory in the same fashion; i.e., the products
are often ordered in batches at fixed intervals. Periodic
batch-ordering is also commonly seen in firms that con-
tract with third-party logistics providers. EMC2, a leading
manufacturer for database servers in the United States, col-
laborates with United Parcel Service (UPS) for inventory
replenishments. The UPS trucks deliver batches of mate-
rials to EMC2 from its suppliers and from EMC2 to its
customers on fixed days of the week.1

This paper considers an inventory system that mod-
els periodic batch-ordering. Specifically, we consider an
N -stage, serial inventory system in which random customer
demand occurs at stage 1; stage 1 orders from stage 2,

stage 2 orders from stage 3, etc., and stage N orders from
an outside supplier that has ample supply. Each stage imple-
ments an echelon �r� nQ�T � policy. Under such a policy,
stage j reviews its echelon inventory order position (defined
in §2) every Tj periods and orders according to an eche-
lon �r� nQ� policy. That is, if the echelon inventory order
position is less than or equal to the echelon reorder point
rj , the stage orders a quantity of the smallest integer mul-
tiple of batch size Qj so as to bring the echelon inventory
order position above rj . We call Tj the reorder interval. For
order coordination, we assume that the order batches and
the reorder intervals satisfy integer-ratio relations.
Two types of fixed costs are often incurred by compa-

nies that order batches at periodic intervals. The first type,
referred to as review cost, is associated with an inventory
review. For instance, a manager may have to physically
review the inventory status at each inventory order period.
In some cases, the review cost may include a shipping cost.
At EMC2, the shipping cost per truck is specified in a con-
tract with UPS. Consequently, the shipping cost is always
incurred in a customer’s inventory review period even if
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there is no material to ship from EMC2 (e.g., when there are
no orders or insufficient supply). The second type of fixed
cost, referred to as setup cost, is associated with processing
a batch. This may include order costs, setup costs, material
handling costs, and quality control costs. At EMC2, some
machines need to be set up for assembling final products.
These products are then inspected and packaged in batches,
and loaded onto the UPS truck. In this paper, we consider
these two sources of fixed costs. In particular, we assume
that there is a review cost Kj incurred for each Tj and a
setup cost kj incurred for each Qj . In addition to these
fixed costs, there are linear holding and backorder costs.
The objective is to find the �r� nQ�T � policy such that the
total supply chain cost per period is minimized.
The single-stage �r� nQ�T � model was first studied by

Hadley and Whitin (1963). They provided an approach
to evaluate the total cost per period. Kiesmüller and Kok
(2006) analyzed the waiting time in this model. Larson and
Kiesmüller (2007) developed a closed-form cost expression
when the demand process is compound generalized Erlang.
Our model can be viewed as a generalization of this single-
stage model. It also can be viewed as a generalization of
the model studied by Maxwell and Muckstadt (1985) and
Roundy (1985), who assumed that demand is deterministic
with a stationary rate. They showed that the well-known
power-of-two policies, under which reorder intervals at all
stages are power-of-two multiples of a base time unit, are
near optimal. Assuming deterministic demand, the problem
can be reformulated as that of finding optimal batch sizes.
These different approaches to modeling control variables
lead to two different policies for the stochastic demand
model in the literature, namely, the �r� nQ� policy and the
�s� T � policy.
The �r� nQ� policy is a special case of the �r� nQ�T �

policy, a case in which the reorder intervals are equal to one
period for all stages.2 The �r� nQ� policy has been stud-
ied extensively in the literature. Available results include
policy evaluation, optimization, and approximations. See,
for example, Axsäter and Rosling (1993), Chen (2000),
Chen and Zheng (1994, 1998), De Bodt and Graves (1985),
Shang (2008), and Shang and Song (2007). We refer the
reader to Axsäter (2003) and Chen (1998a) for a complete
review.
For the �s� T � policy, stage j reviews its echelon inven-

tory order position at the beginning of each T period. If
the inventory order position is less than the echelon base-
stock level s, the stage orders up to s. In other words, this
policy is a special case of the �r� nQ�T � policy in which
the batch sizes are equal to one for all stages. The �s� T �
policy was first discussed by Hadley and Whitin (1963).
Since then, the policy has not attracted much attention from
researchers. Recently, Rao (2003) studied a single-stage
system, in which fixed costs are incurred for each inventory
reorder. He showed that the total cost is jointly convex in
the policy parameters, and he developed a worst-case bound
on the optimal cost. For multistage systems, Cachon (1999)

studied the reorder-interval policy in a one-supplier, multi-
retailer system. He showed that the supplier’s demand vari-
ance will decline as the retailers’ reorder interval becomes
longer. Graves (1996) provided a new approach to evalu-
ating the cost for distribution systems under the so-called
virtual allocation rule. Van Houtum et al. (2007) studied a
serial model and showed that the echelon �s� T � policies are
optimal when the reorder intervals are fixed. They also pro-
vided an algorithm to obtain the optimal basestock levels.
Chao and Zhou (2009) extended these results to the echelon
�r� nQ�T � policies that we consider here. They provided
an algorithm to obtain the optimal reorder points with fixed
batch sizes and reorder intervals. However, it is not clear
how to jointly optimize batch sizes and reorder intervals. To
our knowledge, the only paper that attempts to find optimal
reorder intervals is Feng and Rao (2007). They studied a
two-stage system with echelon �s� T � policies and derived
the average total cost function. They used the golden sec-
tion search to obtain heuristic reorder intervals.
The present paper provides an approach for obtaining

effective heuristic and optimal batch sizes and reorder inter-
vals. For brevity, hereafter we call a set of feasible batch
sizes and reorder intervals a solution. The heuristic solu-
tion is obtained by minimizing the lower and upper bounds
of the total cost function. These total cost bounds, which
are a sum of N separable functions of policy parame-
ters, are obtained in two steps. First, we decompose the
total cost into costs associated with each stage, which
include a penalty cost for holding inadequate stock, referred
to as induced-penalty cost. Second, we construct lower
and upper bounds for the induced-penalty cost by regulat-
ing downstream policy parameters. More specifically, the
penalty cost charged to stage j is smallest when all of
its downstream stages set their reorder intervals and batch
sizes equal to those used at stage j . Conversely, the penalty
cost is highest when all of the downstream stages set their
reorder intervals and batch sizes equal to one. By sub-
stituting these penalty cost bounds for the exact induced-
penalty cost function, in effect we construct lower and
upper bounds on the stage cost. We then minimize the sum
of these stage cost bounds to obtain a heuristic solution.
Finding the optimal solution is more difficult. We pro-

pose a complete enumeration, which is facilitated with
upper and lower bounds on the optimal solution. To obtain
these solution bounds, we derive bounds on the cost of each
echelon. The echelon lower-bound cost function and the
minimum stage costs obtained from the stage lower-bound
cost functions generate the solution bounds for each stage.
Our results enable us to observe the optimal solution and

draw insights on how to manage the �r� nQ�T � system. In
a numerical study, we find that a stage’s optimal batch size
and reorder interval tend to (1) increase in its setup cost
and review cost, respectively; (2) decrease in its holding
cost and the backorder cost, and (3) be insensitive to system
lead times. One interesting finding is that the optimal batch
sizes seem sensitive to Kj , but the optimal reorder intervals
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may not be sensitive to kj , especially when a change of
kj occurs at an upstream stage. This suggests that chang-
ing the batch sizes (due to a change of kj ) may not affect
the optimal reorder intervals or, equivalently, the order and
delivery schedules. Finally, we find that our heuristic is
particularly effective when Kj/hj and kj/hj decrease in j ,
where hj is the echelon holding cost per unit per period for
stage j . Under such circumstances, the heuristic batch sizes
and reorder intervals tend to be equal between stages. This
behavior is consistent with that of the optimal solution.
Our model assumes that Kj is incurred for each Tj and

kj for each Qj . Such assumptions are appropriate for some
companies, such as EMC2, and are commonly seen in the
literature. See, for example, Hadley and Whitin (1963) and
Chen and Zheng (1998). In §5, we consider two alterna-
tive fixed cost assumptions. One is the assumption that
the review cost Kj is incurred only when a stage places
an order. For example, some companies require a physical
inventory count after an order is placed. The other assump-
tion is that kj is incurred for each order (instead of for each
batch). This fits a situation where, for example, a machine
requires only one setup for making multiple batches of
items. As we shall see, our analytical results can be applied
to find the optimal solution under these assumptions.
The rest of the paper is organized as follows: Section 2

describes the model and presents a bottom-up recursion
to evaluate the echelon �r� nQ�T � policy. This evaluation
scheme sets the stage for the subsequent analysis. Section 3
constructs lower and upper bounds on the cost of each stage
for a given set of batch sizes and reorder intervals. We
provide a heuristic based on solving the sum of these cost-
bound functions. Section 4 constructs bounds on the cost
of each echelon, and presents an approach for obtaining
the optimal solution. Section 5 discusses alternative fixed
cost assumptions. Section 6 performs a numerical study to
examine the optimal solution and test the heuristic. Sec-
tion 7 concludes. All proofs are provided in the online
appendix at http://or.journal.informs.org.

2. The Model and Preliminaries
We consider a single-item, periodic-review inventory sys-
tem with N stages. Customer demand occurs at stage 1.
Stage 1 obtains supplies from stage 2, stage 2 from stage 3,
etc., and stage N is replenished by an outside source that
has ample supply. Demands in different periods are inde-
pendent, identically distributed, nonnegative, and integer
valued. Let � denote the mean one-period demand. Denote
by D�t� t+�� and D�t� t+�� the total demand over periods
t� t + 1� � � � � t + � − 1 and t� t + 1� � � � � t + � , respectively.
Let D��� and D��� be the total demand in � and � + 1
periods if the period index t is omitted. Unsatisfied demand
is backlogged. Echelon holding cost hj is incurred for each
unit of on-hand inventories held in echelon j per period,
and backorder cost b is incurred for each unit of backlogs
occurring at stage 1 per period. Define h�i� j� =

∑j
k=i hk. The

transportation lead time Lj between stage j + 1 and stage

j is constant, and Lj ∈ � is the set of positive integers.
Define L�i� j� =

∑j
k=i Lk.

Each stage implements an echelon �r� nQ�T � policy. The
policy operates as follows: Stage j orders at the beginning
of every Tj th period. If the echelon inventory order position
(= inventory on order+ inventory on hand+ inventory in
transit to and at its downstream stages—stage 1’s backo-
rders) is less than or equal to the echelon reorder point rj ,
the stage orders an integer multiple of batch size Qj to
raise the echelon inventory order position back to the inter-
val of �rj + 1� rj + 2� � � � � rj +Qj�. We refer to these Tj th
periods as order periods, and Tj as the reorder interval.
The batch sizes and reorder intervals satisfy integer-ratio
relations, i.e., Qj+1 = qjQj , Tj+1 = njTj , where Qj , Tj , qj ,
nj ∈�, j = 1� � � � �N −1. A fixed review cost Kj is incurred
in each order period. Define K�i� j� =

∑j
v=i Kv. Also, a fixed

setup cost kj is incurred for ordering a batch. Let k�i� j� =∑j
v=i kv.
We assume that the system starts with a plausible inven-

tory state in which stage j’s local on-hand inventory is an
integer multiple of Qj−1, j = 2� � � � �N (Chen and Zheng
1994, Chao and Zhou 2009). In addition, all the replen-
ishment activities in a period occur at the beginning of
the period. At stage j > 1, they occur in the following
sequence: (1) an order, if any, from stage j−1 is received;
(2) an order is placed with stage j + 1 if the period is
stage j’s order period; (3) a shipment sent from stage j+1
Lj periods earlier is received; and (4) a shipment is sent
to stage j − 1. For stage 1, order placement occurs at
the beginning of stage 1’s order periods, while customer
demand arrives during a period. Costs are evaluated at the
end of a period. We assume that all shipments are syn-
chronized. That is, a downstream stage, whenever possible,
places an order when its upstream stage receives a ship-
ment. (A synchronized shipping policy dominates a non-
synchronized one; see Chao and Zhou 2009.) The objective
is to minimize the average total system cost per period.
Define the following inventory variables:

IOPj �t�= echelon inventory order position after ordering
and before demand at stage j at the beginning
of an order period t,

IPj�t�= echelon inventory in-transit position after order-
ing and before demand at stage j at the begin-
ning of an order period t,

IL−
j �t�= echelon inventory level at stage j at the begin-

ning of a period t,
ILj�t�= echelon inventory level at stage j at the end of

a period t.

Here, IOPj and IPj are defined for each order period;
IL−

j and ILj are defined for all periods. Under the
�r� nQ�T � policy, IOPj �t� is uniformly distributed over
�rj + 1� rj + 2� � � � � rj +Qj� (Zipkin 1986, Chao and Zhou
2009), which may be viewed as the “target” echelon inven-
tory quantity that stage j aims to achieve; IPj�t� may be
viewed as the “physical” echelon inventory quantity for
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stage j . The difference between IOPj �t� and IPj�t� is the
number of outstanding orders for stage j (i.e., orders not
yet filled by stage j + 1). The inventory cost is determined
by the ILj�t� values.
We now discuss how to evaluate the average total cost

per period under the �r� nQ�T � policy. This total cost
includes two parts: the average inventory holding and back-
order costs per period and the average review and setup
costs per period. We first show how to evaluate the former.
For brevity, hereafter we refer to “inventory holding and
backorder costs” as “inventory-related costs.”
Consider the dynamics of the echelon inventory vari-

ables under the �r� nQ�T � policies. Suppose that stage N
places an order at the beginning of an order period t.
Define a cycle for stage j , j = 1� � � � �N , with respect to
t as a time interval that includes periods t + L�j�N � + � ,
� = 0� � � � � TN − 1. As we shall see below, this order will
directly or indirectly determine IL−

j and ILj within the
stage j’s cycle. Since the system repeats itself when stage
N places an order in every TN period, it is a regenerative
process with a cycle length of TN periods. Thus, the long-
run average inventory-related costs per period are equal to
the expected inventory-related costs incurred in the cycle
divided by TN . Since these expected costs are determined
by ILj , we show below how to derive ILj within the cycle.
We start from stage N . Suppose that stage N orders

at the beginning of an order period t, and the echelon
inventory order position after ordering is IOPN �t�. Because
stage N has ample supply, IPN �t� = IOPN �t�. This order
will arrive at stage N at period t + LN . Since there will
be no other order periods until period t + TN , IPN �t� will
determine both IL−

N �t+LN + �� and ILN �t+LN + �� for
� = 0� � � � � TN − 1. That is,

IL−
N �t+LN + ��= IPN �t�−D�t� t+LN + ���

and

ILN �t+LN + ��= IPN �t�−D�t� t+LN + ���

Now consider stage j = N − 1�N − 2� � � � �1 sequen-
tially. Define �a� as a roundoff operator, which returns
the greatest integer less than or equal to a, a real num-
ber. Let �x�y� be an operator that returns the remainder
of y divided by x, x ∈�, and y ∈ �0���. According to the
synchronized replenishment rule, stage j will order in peri-
ods t + L�j+1�N � + ��/Tj�Tj , for � = 0� � � � � TN − 1. Since
stage j may not have ample supply, IPj is determined
jointly by its echelon inventory order position IOPj and
stage j+1’s net echelon inventory level IL−

j+1. That is, for
� = 0� � � � � TN − 1,

IPj

(
t+L�j+1�N � +

⌊
�

Tj

⌋
Tj

)

=Oj

[
IL−

j+1

(
t+L�j+1�N � +

⌊
�

Tj

⌋
Tj

)]
� (1)

where

Oj�x�=


x x� rj �

x−mQj otherwise�
(2)

and m ∈ �0��� such that rj + 1� x−mQj � rj +Qj . Note
that x−mQj is IOPj . Equation (1) thus means that if stage
j + 1 has sufficient stock such that IL−

j+1 > rj , IPj is equal
to IOPj . Otherwise, stage j + 1 will ship as much as pos-
sible, in which case IPj = IL−

j+1.
The IPj in the order periods will further determine IL−

j

and ILj within periods t+L�j�N � + � , � = 0� � � � � TN − 1:

IL−
j �t+L�j�N � + ��

= IPj

(
t+L�j+1�N �+

⌊
�

Tj

⌋
Tj

)
−D

[
t+L�j+1�N �+

⌊
�

Tj

⌋
Tj�

t+L�j�N � +
⌊
�

Tj

⌋
Tj +�Tj

���

)
� (3)

ILj�t+L�j�N � + ��

= IPj

(
t+L�j+1�N �+

⌊
�

Tj

⌋
Tj

)
−D

[
t+L�j+1�N �+

⌊
�

Tj

⌋
Tj�

t+L�j�N � +
⌊
�

Tj

⌋
Tj +�Tj

���

]
� (4)

We write ILj��� to represent ILj�t + L�j�N � + �� at
steady state. The long-run average inventory-related costs
per period are equal to

G�r�Q�T�

= 1
TN

E
[TN−1∑

�=0

( N∑
j=1

hjILj���+ �b+h�1�N ���IL1����
−
)]

� (5)

where r = �r1� � � � � rN �, Q = �Q1� � � � �QN �, T =
�T1� � � � � TN �, and �x�− =max�0�−x�.
Below we provide a convenient recursion to evaluate

G�r�Q�T�. Define echelon j as a subsystem that includes
stage i, i� j . The idea behind this scheme is that, at each
iteration, we evaluate the average inventory-related costs
for echelon j , referred to as Gj�y�, provided that stage j’s
echelon inventory order position IOPj �t� is equal to y and
its downstream stage i �<j� follows an �r� nQ�T � policy
with parameters �ri�Qi� Ti�.

Proposition 1. Define

G1�y�=
1
T1

(T1−1∑
�=0

E�h1�y−D�L1 + ���

+ �b+h�1�N ���y−D�L1 + ���−�
)
� (6)

For j = 2� � � � �N , define recursively

Gj�y�=
1
Tj

Tj−1∑
�=0

E
[
hj�y−D�Lj+���

+Gj−1

(
Oj−1

[
y−D

[
Lj+

⌊
�

Tj−1

⌋
Tj−1

)])]
� (7)
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Then, G�r�Q�T� = �GN�rN �, where �GN�rN � = �1/QN � ·∑QN

x=1GN�rN + x��

We next determine the average fixed costs per period.
For stage j , the review cost Kj is incurred for each Tj . So
the average cost per period is Kj/Tj . The setup cost kj is
incurred for each batch Qj . That is, the setup cost of no
order, ordering one batch, ordering two batches, � � � are 0,
kj , 2kj� � � � � In the long run, all demand will be fulfilled, so
the average setup cost per period is �kj��/Qj . With these
fixed cost terms, the total cost per period is

C�r�Q�T�=
N∑
j=1

(
Kj

Tj
+ kj�

Qj

)
+ �GN�rN �� (8)

We now turn to optimization. For fixed Q and T, Chao
and Zhou (2009) provided a recursion to find the opti-
mal reorder points. Their algorithm sequentially minimizes
the inventory-related costs per period for echelon j , j =
1�2�3 � � � , assuming that stage i, i < j implements the opti-
mal reorder point. The minimizer is the optimal reorder
point for stage j . Specifically, define Tj = �T1� T2� � � � � Tj�
and Qj = �Q1�Q2� � � � �Qj� (so T=TN and Q=QN). Start-
ing from stage 1, let

�G1�r1�Q1�T1�=
1
Q1

Q1∑
x=1

G1�r1 + x��

which is convex in r1. Let

r1�Q1�T1�= argmin
r1

�G1�r1�Q1�T1��

For j = 2� � � � �N , suppose that rj−1�Qj−1�Tj−1� is
known. Substitute rj−1�Qj−1�Tj−1� for rj−1 in the Oj−1
function defined in (2), and denote the new function as

O∗
j−1�x�=



x x� rj−1�Qj−1�Tj−1��

x−mQj−1 otherwise�
(9)

where m ∈ �0��� such that rj−1�Qj−1�Tj−1� + 1 � x −
mQj−1 � rj−1�Qj−1�Tj−1� + Qj−1. This O∗

j−1 function has
the same meaning as the Oj−1 function defined in (2),
except that the optimal reorder point is in place.
Replace the Oj−1 function in (7) with O∗

j−1, and let the
resulting function be

Gj�y�Qj−1�Tj�

= 1
Tj

Tj−1∑
�=0

E
[
hj�y−D�Lj+���

+Gj−1

(
O∗

j−1

[
y−D

[
Lj+

⌊
�

Tj−1

⌋
Tj−1

)]
�Qj−2�Tj−1

)]
�

where G1�y�Q0�T1� = G1�y�. Define the average
inventory-related cost per period for echelon j as

�Gj�rj�Qj�Tj�=
1
Qj

Qj∑
x=1

Gj�rj + x�Qj−1�Tj�� (10)

It can be shown that �Gj�rj�Qj�Tj� is convex in rj . Let
rj�Qj�Tj� = argminy �Gj�y�Qj�Tj�. Continue this proce-
dure until stage N . Then �r1�Q1�T1�� � � � � rN �QN�TN�� are
optimal reorder points for fixed Q and T.
With this result, the problem of minimizing C�r�Q�T�

can be reduced to finding the optimal batch sizes and
reorder intervals. That is, let

�Gj�Qj�Tj�
def= �Gj�rj�Qj�Tj��Qj�Tj�� j = 1� � � � �N �

We aim to solve

�P� min
Q�T

C�Q�T�=
N∑
j=1

(
Kj

Tj
+ kj�

Qj

)
+ �GN�QN�TN�

s�t� Qj+1 = qjQj�

Tj+1 = njTj�

Qj� Tj� qj� nj ∈�� j = 1� � � � �N − 1�

In §3, we develop bounds for C�Q�T�. These bounds
will lead to an effective heuristic solution for �P�. In §4, we
provide an approach to solve �P�. Throughout the paper,
the convexity results are based on continuous approxima-
tion on demand and control variables.

3. Cost Bounds and Heuristic
This section develops lower and upper bounds on C�Q�T�.
In §3.1, we first decompose C�Q�T� into costs associ-
ated with each stage by using an induced-penalty cost
function. In §3.2, we construct bounds for the induced-
penalty function. By substituting these bounds for the exact
induced-penalty function, we effectively establish bounds
for C�Q�T�. These total cost bounds will be used to derive
a heuristic presented in §3.3.

3.1. Decomposition of the Total Cost Function

The decomposition of C�Q�T� is based on the construction
of an induced-penalty cost function, which is the penalty
cost charged to an upstream stage if the upstream stage
cannot fulfill an order from its downstream stage. Thus,
the induced-penalty cost is incurred in each downstream
stage’s order period.
Let us start by computing the induced-penalty cost

charged to stage 2. Consider an order period t for stage 1.
Conditioning on IP1�t�, stage 1’s inventory holding and
backorder cost per period is

g1�IP1�t��T1�=
1
T1

(T1−1∑
�=0

E�h1�IP1�t�−D�L1+���

+�b+h�1�N ���IP1�t�−D�L1+���−�
)
�

Since stage 2 will be charged for unfilled orders placed by
stage 1, the optimal reorder point for stage 1 is a solution that
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minimizes stage 1’s cost, assuming that it has ample sup-
ply from stage 2. In such case, IP1�t� is equal to IOP1�t�,
which is uniformly distributed between �r1 + 1� r1 + 2� � � � �
r1 +Q1�. The average inventory holding and backorder cost
per period for stage 1 is

E�g1�IOP1�t��T1��=
1
Q1

Q1∑
x=1

g1�r1+x�T1�
def= ĝ1�r1�Q1�T1��

which is equal to �G1�r1�Q1�T1�. Thus, stage 1 will choose
the optimal reorder point r1�Q1�T1� as its reorder point.
However, stage 1 may not be able to obtain ample sup-

ply from stage 2, namely, IP1�t� is constrained by IL−
2 �t�.

Specifically, IP1�t� = O∗
1 �IL

−
2 �t��, where O∗

1 �·� is defined
in (9). The induced-penalty cost charged to stage 2 is

g1�2�IL
−
2 �t��Q1�T1�= g1�O

∗
1 �IL

−
2 �t���T1�

− g1�IOP1�t��T1��

To see why this is the penalty cost charged to stage
2 for holding inadequate stock, let us recall the defini-
tion of the O∗

1 �·� function. If stage 2 has sufficient stock
such that IL−

2 �t� > r1�Q1�T1�, then O
∗
1 �IL

−
2 �t��= IL−

2 �t�−
mQ1, which is equal to IOP1�t�. In this case, there is
no induced-penalty cost charged to stage 2. On the other
hand, if IL−

2 �t� � r1�Q1�T1�, then O∗
1 �IL

−
2 �t�� = IL−

2 �t�,
and g1�IL

−
2 �t��T1� > g1�IOP1�t��T1�. The difference will

be the induced-penalty cost charged to stage 2.
Now we can compute stage 2’s average inventory and

penalty cost per period. Stage 2 orders every T2 peri-
ods. Consider an order period t for stage 2. Conditioning
on IP2�t�, the inventory and penalty cost per period for
stage 2 is

g2�IP2�t��Q1�T2�

= 1
T2

( T2−1∑
�=0

E
[
h2�IP2�t�−D�L2 + ���

+ g1�2

(
IP2�t�−D

[
L2 +

⌊
�

T1

⌋
T1

)
�Q1�T1

)])
�

Here, IP2�t�−D�L2 + ��/T1�T1� is IL−
2 at the beginning

of stage 1’s order period t+L2+��/T1�, � = 0� � � � � T2−1.
If stage 2 has ample supply from stage 3, IP2�t� will be
uniformly distributed between �r2+1� r2+2� � � � � r2+Q2�.
Stage 2’s average inventory and penalty cost per period is

E�g2�IP2�t��Q1�T2��

= 1
Q2

Q2∑
x=1

g2�r2 + x�Q1�T2�
def= ĝ2�r2�Q2�T2��

Following the same logic, since IP2�t� is in fact con-
strained by IL−

3 �t�, we can derive the induced-penalty cost
charged to stage 3 in each stage 2’s order period t, and
obtain the average inventory holding and penalty cost per

period for stage 3. The same procedure can be carried out
for the rest of the chain.
We generalize the above procedure below. For stage j ,

j = 2�3� � � � �N � and let IL−
j �t�= y, where t is stage j−1’s

order period. Suppose that rj−1�Qj−1�Tj−1� is known. The
induced-penalty cost charged to stage j is

gj−1�j �y�Qj−1�Tj−1�=gj−1�O
∗
j−1�y��Qj−2�Tj−1�

−gj−1�y−zQj−1�Qj−2�Tj−1�� (11)

where z ∈ �, the set of integers, such that rj−1�Qj−1�Tj−1�+
1 � y − zQj−1 � rj−1�Qj−1�Tj−1� + Qj−1. Note that z is
an integer to bring y − zQj−1 back to the interval of
�rj−1�Qj−1� Tj−1�+1� � � � � rj−1�Qj−1� Tj−1�+Qj−1�, so y−
zQj−1 is IOPj−1�t�.
Conditioning on IPj�t� = y, the inventory and penalty

cost per period for stage j is

gj�y�Qj−1�Tj�

= 1
Tj

(Tj−1∑
�=0

E
[
hj�y−D�Lj+���

+gj−1�j

(
y−D

[
Lj+

⌊
�

Tj−1

⌋
Tj−1

)
�Qj−1�Tj−1

)])
� (12)

If stage j has ample supply from stage j + 1, its average
inventory and penalty cost per period is

ĝj �rj �Qj�Tj�=
1
Qj

Qj∑
x=1

gj�rj + x�Qj−1�Tj��

= 1
QjTj

Qj∑
x=1

Tj−1∑
�=0

E�hj�rj + x−D�Lj + ����

+Pj�rj �Qj�Tj�� (13)

where the average penalty cost per period is

Pj�y�Qj�Tj�

= 1
QjTj

Qj∑
x=1

Tj−1∑
�=0

E
[
gj−1� j

(
y+ x−D

[
Lj +

⌊
�

Tj−1

⌋
Tj−1

)
�

Qj−1�Tj−1

)]
� (14)

As we shall show in Proposition 2 below, the optimal
reorder point rj�Qj�Tj� discussed in §2 will minimize
ĝj �rj �Qj�Tj�� i.e.,

rj�Qj�Tj�= argmin
rj

ĝj �rj �Qj�Tj�� (15)

Proposition 2. For fixed Q and T, the optimal reorder
point rj�Qj�Tj� minimizes ĝj �rj �Qj�Tj�, j = 1� � � � �N .
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In other words, the optimal reorder point may be inter-
preted as an echelon inventory level that a stage tries to
maintain in order to minimize its stage cost, while all of its
downstream stages use the best reorder points.
Define the cost for stage j in which the optimal reorder

point rj�Qj�Tj� is implemented as

ĝj �Qj�Tj�= ĝj �rj�Qj�Tj��Qj�Tj��

Proposition 3 states that the inventory-related costs for ech-
elon j can be decomposed into costs associated with each
stage within the echelon.

Proposition 3. �Gj�Qj�Tj� = ∑j
i=1 ĝi�Qi�Ti�, for j =

1� � � � �N ,

Let cj�Qj�Tj�
def= Kj/Tj + �kj��/Qj + ĝj �Qj�Tj�, the

average total cost per period for stage j , j = 1� � � � �N .
We have

C�Q�T�=
N∑
j=1

(
Kj

Tj
+ kj�

Qj

)
+ �GN�QN�TN�

=
N∑
j=1

(
Kj

Tj
+ kj�

Qj

)
+

N∑
j=1

ĝj �Qj�Tj�

=
N∑
j=1

cj�Qj�Tj��

This completes the decomposition of C�Q�T�.

3.2. Bounds for the Stage Cost Functions

This section derives lower and upper bounds for the stage
cost cj�Qj�Tj�. At the end, we shall see that these cost
bounds are a function of stage j’s control variables and are
independent of stage i’s, i 
= j .
Consider any given feasible solution �Q�T� with Qj

and Tj defined as in §2. For j = 1� � � � �N , define

Tj
j = a vector with j components whose values are Tj ,

Qj
j = a vector with j components whose values are Qj ,

T1
j = a vector with j components whose jth component is

Tj and the other components are 1,
Q1

j = a vector with j components whose jth component is
Qj and the other components are 1.

For example, T3
3 = �T3� T3� T3� and T1

4 = �1�1�1� T4�. Recall
the average induced-penalty cost function Pj�y�Qj�Tj� in
(14). We first state the main result of this section.

Proposition 4.
(1) With fixed batch sizes Q, Pj�y�Qj�T

j
j� �

Pj�y�Qj�Tj�� Pj�y�Qj�T
1
j �, for all y and j = 2� � � � �N .

(2) With fixed reorder intervals T, Pj�y�Q
j
j�Tj� �

Pj�y�Qj�Tj�� Pj�y�Q
1
j �Tj�, for all y and j = 2� � � � �N .

Proposition 4(1) states that for stage j , when its down-
stream stage i uses the same reorder interval length as stage
j (i.e., Ti = Tj , i < j), the resulting average induced-penalty
cost function Pj�y�Qj�T

j
j� is a lower bound to Pj�y�Qj�Tj�

for all y. On the other hand, when a downstream stage i
uses the smallest reorder interval length (i.e., Ti = 1, i < j),
the resulting induced-penalty cost function Pj�y�Qj�T

1
j � is

an upper bound. Proposition 4(2) states the same result for
regulating downstream batch sizes.
With Proposition 4, we can construct cost bounds to

ĝj �y�Qj�Tj� for any y by first regulating downstream
reorder intervals and then regulating downstream batch
sizes. More specifically, since

ĝj �y�Qj�Tj�� ĝj �y�Qj�T
j
j�� ĝj �y�Q

j
j�T

j
j� and

ĝj �y�Qj�Tj�� ĝj �y�Qj�T
1
j �� ĝj �y�Q

1
j �T

1
j ��

we have ĝj �y�Q
j
j�T

j
j� � ĝj �y�Qj�Tj� � gj�y�Q

1
j �T

1
j � for

all y. Consequently,

ĝj �rj�Q
1
j �T

1
j ��Q

1
j �T

1
j �� ĝj �rj�Q

1
j �T

1
j ��Qj�Tj�

� ĝj �rj�Qj�Tj��Qj�Tj��

Similarly, we can that show ĝj �rj�Qj�Tj��Qj�Tj� �

ĝj �rj�Q
j
j�T

j
j��Q

j
j�T

j
j�. Together, we have

ĝj �rj�Q
j
j�T

j
j��Q

j
j�T

j
j�� ĝj �rj�Qj�Tj��Qj�Tj�

� ĝj �rj�Q
1
j �T

1
j ��Q

1
j �T

1
j �

or, equivalently, ĝj �Q
j
j�T

j
j� � ĝj �Qj�Tj� � ĝj �Q

1
j �T

1
j �,

which implies

cj�Q
j
j�T

j
j�� cj�Qj�Tj�� cj�Q

1
j �T

1
j �� (16)

This completes the construction of the lower- and upper-
bound functions. Note that cj�Q

j
j�T

j
j� and cj�Q

1
j �T

1
j � are a

function of stage j’s control variables �Qj� Tj�. They are
independent of downstream stage i’s decision variables,
i < j .
To explain why regulating downstream policy parameters

leads to cost bounds for the exact induced-penalty function,
we take regulating reorder intervals as an example. Let us
consider a simple two-stage example by fixing Q2 =Q1 = 1
and letting T2 = 2. Thus, T2 can be either �1�2� or �2�2�.
Since Q is fixed, we omit Qj in all cost functions in (11)–
(14). Note that when Qj = 1, the �r� nQ�T � policy reduces
to the �s� T � policy, where sj = rj+1. Also, the O∗

j function
defined in (9) becomes

O∗
j �x�=min�rj�Tj�+ 1� x��

For convenience, set T2 = �1�2� and T2
2 = �2�2�. For T2 =

�1�2�, stage 1 orders twice in T2 = 2 periods, each order
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resulting in an induced-penalty cost. Thus, for any IP2 = y,
the average induced-penalty cost per period is

P2�y�T2�

= 1
2
E�g1�2�y−D�L2��1�+g1�2�y−D�L2+1��1��

= 1
2
�E�g1�min�r1�1�+1�y−D�L2���1�−g1�r1�1�+1�1��

+E�g1�min�r1�1�+1�y−D�L2+1���1�

−g1�r1�1�+1�1����

On the other hand, for T2
2 = �2�2�, stage 1 orders once

in T2 = 2 periods, and the average penalty cost per period
is

P2�y�T
2
2�

= 1
2
E�g1�2�y−D�L2��2�+ g1�2�y−D�L2��2��

= E�g1�2�y−D�L2��2��

=E�g1�min�r1�2�+1�y−D�L2���2�−g1�r1�2�+1�2���

Figure 1(a) shows these E�g1�2�·� ·�� functions. It is inter-
esting to observe that

E�g1�2�y−D�L2��1��� E�g1�2�y−D�L2��2��

� E�g1�2�y−D�L2 + 1��1���

but P2�y�T
2
2� � P2�y�T2�, as shown in Figure 1(b). This

observation suggests that given the same IP2 = y, stage 2
is more likely to fulfill a stage 1 order generated by two
periods of demand than to fulfill two stage 1 orders, each
generated by one period of demand. We refer to this fact
as demand aggregation effect. Thus, the resulting penalty
cost charged to stage 2 is lower in the former case.
The cost bound constructed by regulating downstream

batch sizes is easier to explain. We use the lower bound as
an example. Consider a two-stage system with batch sizes
Q1 and Q2. If stage 1 uses Q2 instead of Q1 as its batch size,
the resulting best reorder point will be smaller (see Lemma
7(2) in the electronic companion). Note that the penalty cost
is incurred when IL−

2 �= IP2 −D�L2�� is less than or equal
to the reorder point. Thus, given the same IP2, a smaller
reorder point will generate a smaller induced-penalty cost.

3.3. Heuristic

We now propose a heuristic for �P�. We first introduce two
simplified versions of �P� by assuming that either Q or T
is fixed. We call these problems the T -problem and the
Q-problem, respectively.

Figure 1. A two-stage example with h1 = h2 = 0�5,
L1 = L2 = 1, b= 9.

10 15 20 25
0

20

40

y

10 15 20 25
0

10

20

30

y

E[g1, 2(y – D[L2), 1)]

E[g1, 2(y – D[L2 + 1), 1)]

E[g1, 2(y – D[L2), 2)]

P2(y, T2)

(a)

(b)

P2(y, T2
2)

Notes. Demand is Poisson with mean �= 4 units/period. (a) The expected
induced-penalty cost functions incurred at each order period for T2 =
�1�2� (solid lines) and for T2

2 = �2�2� (dashed line). (b) The average
induced-penalty cost per period for T2 = �1�2� (solid line) and for T2

2 =
�2�2� (dashed line).

3.3.1. The T -problem. This subproblem assumes that
Qj are fixed in �P� and the decision variables are Tj . For
notational simplicity, we omit Qj in the related cost func-
tions, such as cj�Qj�Tj� and ĝj �Qj�Tj�, and omit the fixed
cost term

∑N
i=1�ki��/Qi because it is a constant. Thus, the

problem �P� becomes

�TP� min
T

N∑
j=1

cj�Tj��

s�t� Tj+1 = njTj� nj� Tj ∈�� j = 1� � � � �N − 1�

where cj�Tj�= �Kj/Tj�+ ĝj �Tj�.
Now consider the lower- and upper-bound functions

ĝj �T
j
j� and ĝj �T

1
j �. Define gj�Tj�= ĝj �T

j
j�, ḡj �Tj�= ĝj �T

1
j �,

and cj�Tj�= �Kj/Tj�+ g
j
�Tj�, c̄j �Tj�= �Kj/Tj�+ ḡj �Tj�.

Proposition 5. c̄j �Tj� is convex in Tj .

We propose a simple heuristic for �TP� by solving the
sum of the stage cost bound functions, subject to relaxed
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constraints. We use the upper-bound cost functions to illus-
trate the idea. We aim to solve the following problem:

min
T

N∑
j=1

c̄j �Tj�

s�t� Tj+1 � Tj� j = 1� � � � �N − 1�

Since the objective function is the sum of N separable,
convex functions, a clustering algorithm (e.g., Maxwell and
Muckstadt 1985, pp. 1325–1334) can solve the relaxed
problem efficiently. The output of the algorithm is an
optimal partition that includes disjoint clusters, such as
�c�1�� c�2�� � � � � c�M��, where M is the number of clusters
in the optimal partition. (A cluster is a set of consecutive
stages that use the same reorder interval.)
After the optimal partition is identified, we find a solu-

tion that satisfies the integer-ratio constraints for each
cluster. More specifically, let Tc�1� = argminT

∑
i∈c�1� c̄i�T �.

For m = 2� � � � �M , we solve the following problem
sequentially:

Tc�m�=argmin
T

∑
i∈c�m�

c̄i�T �� s�t� T =nTc�m−1�� n∈�� (17)

In other words, we restrict Tc�m� to be an integer multiple of
Tc�m−1�. Let T ′

j = Tc�m� for j ∈ c�m��m= 1� � � � �M . We then
obtain one feasible reorder interval solution �T ′

1� � � � � T
′
N �

for �TP�. With these reorder intervals, we can find the best
reorder points through the procedure in §2. Let the resulting
total cost be C ′.
Similarly, we can apply the same procedure to minimize∑N
j=1 cj�Tj�. However, since cj�Tj� may not be a convex

function, we cannot apply the clustering algorithm directly.
Thus, we use the same partition found in the upper-bound
problem and then find the reorder intervals in the same
fashion as in (17) except replacing c̄j �Tj� with cj�Tj�. In
this case, we use the first local minimizer as the reorder
interval solution for a cluster. Define the resulting feasible
reorder intervals as �T ′′

1 � � � � � T
′′
N � and the resulting optimal

cost as C ′′.
The heuristic solution for �TP� is either T ′

j or T ′′
j , j =

1� � � � �N , whichever yields a smaller total cost.

3.3.2. The Q-Problem. The Q-problem assumes that
Tj are fixed and the decision variables are Qj . Again, we
omit Tj in the related cost functions and omit the fixed cost
term Kj/Tj . The problem �P� becomes

�QP� min
Q

N∑
j=1

cj�Qj��

s�t� Qj+1 = qjQj� qj�Qj ∈�� j = 1� � � � �N − 1�

where cj�Qj�= �kj�/Qj�+ ĝj �Qj�. Also, define gj�Qj�=
ĝj �Q

j
j�, ḡj �Qj�= ĝj �Q

1
j �, cj�Qj�= �kj�/Qj�+g

j
�Qj�, and

c̄j �Qj�= �kj�/Qj�+ ḡj �Qj�. It can be shown that c̄j �Qj� is
convex in Qj . (The proof is available from the authors upon
request.) Thus, the same procedure for generating candidate

solutions T ′
j and T ′′

j can be applied to �QP�. Define the
resulting candidate solutions as Q′

j and Q′′
j . The heuristic

solution is either Q′
j or Q

′′
j , whichever generates a smaller

total cost.
The heuristic for �P� utilizes the proposed heuristics for

�TP� and �QP�. Specifically, it includes three steps. First,
we generate initial reorder intervals from the correspond-
ing deterministic model, i.e., by assuming deterministic
demand with a rate equal to � and setting Kj as the fixed
costs (see, e.g., Chen 1998b for the cost formulation). An
optimal partition for the relaxed problem can be determined
by the cost parameters. Then, the initial reorder intervals
can be determined by applying the same procedure as in
(17). Second, we use these reorder intervals as a “seed” and
apply the heuristic for �QP� to generate candidate batch
sizes Q′

j and Q
′′
j , j = 1� � � � �N . Third, we fix batch sizes to

either Q′
j or Q

′′
j and apply the heuristic for �TP� to gen-

erate the candidate reorder intervals. In other words, at the
end of the procedure, we obtain four candidate solutions.
The final heuristic solution for �P� is the one that yields
the smallest total cost. As we show in §6, this heuristic
performs well in general.

4. The Optimal Solution
To find the optimal solution �Q∗

j � T
∗
j �, j = 1� � � � �N , we

propose a complete enumeration, which is facilitated with
bounds on the optimal solution. Below we first construct
bounds on �Gj�y�Qj�Tj�, the average inventory-related
costs for echelon j , j = 1� � � � �N . We then demonstrate
how to use these echelon cost bounds to obtain the solution
bounds.
The cost bounds for echelon j are obtained from a single-

stage �r� nQ�T � system that has the original system param-
eters. The rationale for constructing these echelon cost
bounds is the same as that for the system with �r� nQ�
policies (i.e., Tj = 1) described in Shang and Song (2007).
Briefly, consider echelon j that includes stages 1�2� � � � � j .
If we restrict the local holding cost rate for each stage in
this echelon to the same value, there will be no incen-
tive to stock inventories in stages i = 2� � � � � j . Thus, the
echelon system collapses into a single-stage system with
lead time L�1� j�. The lower- (upper-) bound is obtained
by undercharging (overcharging) the holding cost rate hj
(resp., h�1� j�) to each stage. We refer the reader to Shang
and Song (2007) for a detailed discussion.
The resulting echelon cost bound functions are defined

below. For j = 1� � � � �N , let

Gl
j�y�Tj�=

1
Tj

Tj−1∑
�=0

E�hj�y−D�L�1�j�+���

+�b+h�j�N ���y−D�L�1� j�+���−�� (18)

Gu
j �y�Tj�=

1
Tj

Tj−1∑
�=0

E�h�1� j��y−D�L�1� j�+���

+�b+h�1�N ���y−D�L�1� j�+���−�� (19)
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The lower-bound function is

�Gl
j�y�Qj� Tj�=

1
Qj

Qj∑
x=1

Gl
j�y+ x�Tj�� (20)

and the upper-bound function is

�Gu
j �y�Qj� Tj�=

1
Qj

Qj∑
x=1

Gu
j �y+ x�Tj�� (21)

Note that �Gl
j (resp., �Gu

j ) is the average inventory-related
costs per period for a single-stage �r� nQ�T � system with
holding cost rate hj (resp., h�1� j�), backorder cost rate
�b+h�j+1�N ��, and lead time L�1� j�.
Let

ruj �Qj� Tj�= argmin
y

�Gl
j�y�Qj� Tj��

r lj �Qj� Tj�= argmin
y

�Gu
j �y�Qj� Tj��

and

�Gl
j�Qj� Tj�= �Gl

j�r
u
j �Qj� Tj��Qj� Tj��

�Gu
j �Qj� Tj�= �Gu

j �r
l
j �Qj� Tj��Qj� Tj��

Also, define the average pipeline inventory cost
(or the average inventory in-transit cost) as 1j =∑j

i=2�hiE�D�L�1� i−1����. We have

Proposition 6. For j = 1� � � � �N ,
(1) �Gl

j�y�Qj�Tj�+1j�
�Gj�y�Qj�Tj�� �Gu

j �y�Qj�Tj�
+1j .
(2) r lj �Qj� Tj�� rj�Qj�Tj�� ruj �Qj� Tj�.
(3) �Gl

j�Qj� Tj�+1j �
�Gj�Qj�Tj�� �Gu

j �Qj� Tj�+1j .
(4) �Gl

j�Qj� Tj� and �Gu
j �Qj� Tj� are jointly convex and

increasing in Qj and Tj .

Let Ch be any heuristic cost and cj�Qj� Tj�
def= cj�Q

j
j�T

j
j�.

For any j , we have

Ch
�C�Q∗�T∗�=

N∑
i=1

Ki

T ∗
i

+
N∑
i=1

ki�

Q∗
i

+ �GN�Q
∗
N�T

∗
N�

=
j∑

i=1

Ki

T ∗
i

+
j∑

i=1

ki�

Q∗
i

+
N∑

i=j+1
ci�Q

∗
i �T

∗
i �+ �Gj�Q

∗
j �T

∗
j �

�
K�1� j�

T ∗
j

+ k�1� j��

Q∗
j

+
N∑

i=j+1
ci�Q

∗
i � T

∗
i �

+ �Gl
j�Q

∗
j � T

∗
j �+1j� (22)

Inequality (22) is due to the fact that T ∗
j � T ∗

j−1 �

· · · � T ∗
1 and Q∗

j � Q∗
j−1 � · · · � Q∗

1, Equation (16), and
Proposition 6(3).
We can construct solution bounds for the optimal solu-

tion �Q∗
j � T

∗
j � recursively for stage j =N�N −1� � � �1 from

the inequality (22). The construction starts from stage N .
When j =N , (22) becomes

K�1�N �

T ∗
N

+ k�1�N ��

Q∗
N

+ �Gl
N �Q

∗
N � T

∗
N ��Ch −1N � (23)

Since the left-hand side of the inequality is jointly con-
vex in �QN �TN �, we can identify the solution bounds for
�Q∗

N � T
∗
N � such that the inequality holds. Let �T N � �TN � and

�QN � Q̄N � denote the bounds for T
∗
N and Q∗

N , respectively.
3

Next, when j =N − 1, (22) becomes

K�1�N−1�
T ∗
N−1

+ k�1�N−1��
Q∗

N−1
+ �Gl

N−1�Q
∗
N−1� T

∗
N−1�

�Ch −1N−1 − cN �Q
∗
N � T

∗
N �� (24)

For TN ∈ �T N � T N + 1� � � � � �TN � and QN ∈ �QN � QN +
1� � � � � Q̄N �, we can search for the minimum value of
cN �QN �TN �, which we refer to as cN . Thus, the right-
hand side of (24) is less than or equal to Ch −1N−1 − cN .
From here, we can search for the solution bounds for
�Q∗

N−1� T
∗
N−1� because the left-hand side of (24) is jointly

convex. The same procedure repeats until j = 1. At the
end of the procedure, we obtain the solution bounds for
�Q∗

j � T
∗
j �, j = 1� � � � �N . The optimal solution can be deter-

mined by enumerating all feasible solutions that satisfy
the integer-ratio constraints within the computed solution
bounds.

5. Alternative Fixed Cost Assumptions
In our model, we assume that Kj is incurred in each order
period, regardless of whether or not an order is placed,
and kj is incurred for each order batch. As discussed in
the Introduction, these assumptions do indeed characterize
some companies, such as EMC2. Below we consider alter-
native fixed cost assumptions that model other situations.
As we shall see, the approach for finding the optimal solu-
tion in §4 can be applied with minor modifications.

Kj Incurred Only When Placing an Order

This assumption applies to a situation in which Kj is
incurred only when an order is placed. For example, some
companies require a physical inventory count when an
order is placed. Or, a company may have fleet trucks that
ship materials only when its buyer places an order. (Kj is
the shipping cost in the latter example.)
This assumption only affects the first fixed cost term

in (8). More specifically, for stage j with the reorder interval
Tj , an order will be placed when IOPj −D�Tj�� rj . Since
IOPj is uniformly distributed over �rj + 1� � � � � rj +Qj�, the
probability of placing an order in an order period is

p�Qj� Tj�=
1
Qj

Qj∑
x=1

P�D�Tj�� x�� (25)
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Table 1. Fixed cost terms under alternative assumptions.

Kj incurred for each Tj Kj incurred when placing an order

kj incurred per batch Type I:
N∑
j=1

(
Kj

Tj
+ kj�

Qj

)
Type II:

N∑
j=1

(
Kjp�Qj� Tj�

Tj
+ kj�

Qj

)

kj incurred per order Type III:
N∑
j=1

(
Kj

Tj
+ kjp�Qj� Tj�

Tj

)
Type IV:

N∑
j=1

(
Kj + kj

Tj

)
p�Qj� Tj�

Thus, the average total order cost per period for all stages is

N∑
j=1

(
Kjp�Qj� Tj�

Tj

)
� (26)

We only need to replace the first term in (8) with (26).

kj Incurred for Each Order, Not for Each Batch
This assumption assumes that the setup cost kj is

incurred for each order that may include several batches.
This is equivalent to saying that kj is incurred only when
placing an order. Thus, we only need to replace the second
fixed cost term in (8) with

∑N
j=1�kjp�Qj� Tj�/Tj�.

Table 1 presents a summary of four possible combina-
tions of fixed costs. Type I is our current model. By defin-
ing an aggregate fixed cost term, say, K ′

j = kj + Kj , and
setting Tj = 1, Type IV reduces to the classic �r� nQ� model
by assuming that there is a single fixed cost K ′

j incurred
per order (e.g., Zheng and Chen 1992). For Type II, III,
and IV, we can use the same approach as in §4 to find the
optimal solution. However, since p�Qj� Tj�/Tj is not nec-
essarily convex, we need to exclude the fixed cost terms in
(22) to find the upper bound. That is,

�22��
N∑

i=j+1
ci�Q

∗
i � T

∗
i �+ �Gl

j�Q
∗
j � T

∗
j �+1j�

Since �Gl
j�Qj� Tj� is convex and increasing in �Qj� Tj�, we

can follow the same procedure to find the solution bounds
from stage N , N −1, until stage 1. In this case, clearly, the
lower bounds for both Q∗

j and T ∗
j are one.

6. Numerical Study
We perform a three-part numerical study. In §6.1, we con-
duct a sensitivity analysis on the optimal solution. The
objective is to examine how the optimal policy changes
with respect to a change in system parameters. In §6.2, we
examine the effectiveness of the heuristic. From this exam-
ination, we identify the situations under which the heuristic
performs effectively and ineffectively. Finally, in §6.3, we
provide a numerical study for the system with a fixed setup
cost incurred per order, i.e., the Type III model in Table 1.

6.1. Observations on the Optimal Solution

We observe the optimal solution of instances that have the
following parameters:

N = 3� K1�K3 ∈ �5�50��K2 = 20�

k1� k3 ∈ �1�20�� k2 = 10� h1� h3 ∈ �0�1�1��h2 = 1�

L1�L3 ∈ �1�3��L2 = 2� b= �30� h�1�3���

We assume a Poisson demand with rate � = 4. We fix
stage 2’s parameters, and change the parameters of stage 1
and stage 3 as shown. We also consider small b = h�1�3�
and large b= 30. The total number of instances is 512. For
each instance, we compute the optimal solution �Q∗�T∗�
and the optimal cost C∗.
We summarize several numerical observations below.
(1) T ∗

j and Q∗
j increase in Kj and kj , respectively. Both

decrease in hj . This observation is intuitive and is consis-
tent with the observation found in the single-stage �s� T �
and �r� nQ� systems (Rao 2003, Zheng 1992). When Kj is
large, the stage should use a larger Tj to reduce the order
frequency. Also, when hj is small, the stage should stock
more inventory by increasing Tj . Similar arguments apply
to the effect of kj on Qj .
Both T ∗

1 and Q∗
1 decrease in b. (In fact, most T ∗

j and
Q∗

j decrease in b.) This finding may be explained as fol-
lows: When the backorder penalty is large, stage 1 needs
to maintain a small batch size and a shorter reorder interval
so as to be more responsive to the demand. On the other
hand, the optimal reorder points rj�Q

∗
j �T

∗
j � increase in b,

because each stage has to increase its safety stock level in
order to avoid a higher backorder penalty.
Lead times seem to have little effect on T ∗

j and Q∗
j , and

even less effect on T ∗
j .

(2) As stated, when Kj (kj ) changes, the change will
affect T ∗

j (Q∗
j ). However, it is not clear how Kj (kj ) affects

Q∗
j (T

∗
j ). We provide observations for this question.

First, consider 256 pairs of instances that differ only
in the value of K3. Q

∗
j changes in 121 (i.e., 47.3%) of

these pairs. When K1 rather than K3 is allowed to vary,
Q∗

j changes in 186 (i.e., 72.7%) of the pairs. Thus, K1 has
a greater impact on the optimal batch sizes than does K3.
On the other hand, when k3 increases from 1 to 20,

the value of T ∗
j changes in 10 pairs (i.e., 3.9%). However,

when k1 rather than k3 varies, the value of T
∗
j changes in

38 pairs (i.e., 14.8%). Thus, k1 has a greater impact on Tj
than does k3.
These observations suggest two conclusions: (i) The opti-

mal batch sizes and reorder intervals are more sensitive to
downstream fixed costs than to upstream fixed costs. (ii) It
is necessary to re-examine both optimal reorder intervals
and batch sizes when Kj changes; however, it may not be
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Table 2. Sensitivity of Q∗
j and T

∗
j to value of fixed cost

parameters.

Ratio of Q∗
j Ratio of T ∗

j

Fixed cost change (due to change (due to
parameters K3 change) (%) k3 change) (%)

K3 = �5�50�, k3 = �1�20� 30/64= 46�9 3/64= 4�7
K3 = �1�20�, k3 = �5�50� 27/64= 42�2 13/64= 20�3

necessary to change reorder intervals when kj changes at
an upstream stage.
To assess whether the above observations hold true with

bigger kj and smaller Kj , we swap the parameter sets of
kj and Kj , i.e., kj = �5�50�, and Kj = �1�20� for the
128 instances (i.e., 64 pairs), where �L1�L2�L3�= �1�2�1�
and hold other parameters the same. We compare this new
set with the original 128 instances that have the same lead
times. Table 2 presents the results for both the new set of
64 pairs and the original set. While the impact of k3 on
T ∗
j is greater in the new set, the impact of K3 on Q∗

j is
only slightly reduced. We also observe in the new set that
the impacts of K1 and k1 are larger than the impacts of
K3 and k3. These findings provide further support for the
above two conclusions.
(3) The cost ratios Kj/hj and kj/hj are strongly related

to T ∗
j and Q∗

j , respectively. More specifically, when Kj/hj
(kj/hj ) decreases in j , the optimal reorder intervals T ∗

j

(Q∗
j ) tend to be the same. This is because when the ratio

of K1/h1 (k1/h1) is high, stage 1 will choose a larger
T ∗
1 (Q∗

1). Due to the integer-ratio constraints, an upstream
stage would tend to use the value of T ∗

1 (Q∗
1) as its reorder

interval (batch size).

Remark 1. The range of the solution bounds varies. In the
512 instances we tested, the means (standard deviations) of
the range are 48.4 (24.2) and 17.9 (13.3) for Q∗

1 and T ∗
1 ,

47.1 (19.5) and 11.6 (5.0) for Q∗
2 and T ∗

2 , and 73.0 (6.5)
and 28.8 (9.1) for Q∗

3 and T ∗
3 . We observe that the optimal

solution can locate anywhere within these ranges. �

6.2. Effectiveness of the Heuristic

We next examine the effectiveness of the proposed heuristic
for the �r� nQ�T � policy. We compute the heuristic solution
and the corresponding heuristic cost Ch for each of the
original 512 instances tested in §6.1. Define the percentage
error as

3%= �Ch −C∗�
C∗ × 100%�

The average percentage error is 1.31% with a maximum of
7.67%. Figure 2 shows the distribution of the errors.
Below we provide several observations regarding the

heuristic.
(1) The heuristic is more effective when the backorder

cost rate b is large. For example, when b= 30, the average
error is 0.32% with a maximum of 3.22%. The heuristic

Figure 2. The distributions of the percentage errors for
the 256 instances that have b = h�1�3� (gray
bars) and b= 30 (black bars).
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generates the optimal solution in 65 out of 256 instances.
On the other hand, when b is small, i.e., b = h�1�3�, the
average error is 2.30% with a maximum of 7.67%.
(2) For a given b, the heuristic is more effective when

K1/h1 and k1/h1 are larger than Kj/hj and kj/hj , respec-
tively, j 
= 1. For the 32 instances with b= h�1�3� that satisfy
the above condition, the average percentage error is 0.41%,
which is significantly lower than the average error of 2.30%
of all 256 instances with b = h�1�3�. We observe that the
optimal batch sizes and reorder intervals tend to be equal
among all stages in these 32 instances. For the special case
where Kj/hj and kj/hj decrease in j (12 instances), the
heuristic is surprisingly effective. The heuristic generates
eight optimal solutions, which comprise the total optimal
solutions found by the heuristic when b= h�1�3�.
To explain why the heuristic is effective under such cost

structure, we first review an existing result. For the deter-
ministic demand model with reorder intervals (batch sizes)
as control variables, it is well known that the optimal par-
tition obtained from solving the relaxed problem can be
determined by the cost ratios Kj/hj (kj/hj ). See Zipkin
(2000, pp. 125–130) for an explanation. Here, we observe
that the partition obtained from the cost ratios is mostly
consistent with that obtained from solving �QP� in step 2
and �TP� in step 3 in our heuristic. For example, when
K1/h1 and k1/h1 are significantly larger than the others, we
observe that the heuristic tends to group all stages into one
cluster, which results in all stages having the same heuristic
reorder intervals and batch sizes. This behavior is consis-
tent with that of the optimal solution as explained in the
third observation of §6.1.
(3) On the other hand, for a given b, the heuristic

performs less effectively when Kj/hj increases in j . For
example, consider the 48 instances that have b= h�1�3�
and �K1/h1�K2/h2�K3/h3� equal to either �5�20�50�
or �5�20�500�. The average percentage error is 4.19%,
which is larger than the average percentage error of
2.30%. If we only consider the 32 instances that have
�K1/h1�K2/h2�K3/h3� = �5�20�50�, the average percent-
age error is 4.65%. Interestingly, the performance does not
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seem worse if we only consider the instances where both
Kj/hj and kj/hj increase in j .
This again may be explained by the clusters generated

from the heuristic. Under such cost structure, the heuris-
tic tends to generate three clusters after solving �TP� in
step 3. Thus, stage 1 in cluster c�1� will generate a small T1
(because K1/h1 is small, which implies either K1 is small
and/or h1 is large). This small T1 restricts the possibility that
T ∗
1 could be a large value. For example, for the instance with
the maximum percentage error of 7.67%, the parameters
are �K1�K2�K3� = �5�20�50�, �k1� k2� k3� = �20�10�20�,
�h1� h2� h3� = �1�1�1�, �L1�L2�L3� = �1�2�1�, and b =
h�1�3�. The optimal solution is �T ∗

1 � T
∗
2 � T

∗
3 � = �6�6�6� and

�Q∗
1�Q

∗
2�Q

∗
3� = �22�22�22�. The heuristic groups stages

into three clusters, which results in a heuristic solution
�T1� T2� T3�= �2�4�8� and �Q1�Q2�Q3�= �16�16�16�.
(4) The performance of the heuristic seems insensitive

to lead times. That is, for the same lead time parameters,
we can find both high and low percentage error cases. This
observation is intuitive: Lead times have a direct impact
on the optimal reorder points, but have less impact on the
optimal batch sizes or reorder intervals. Thus, they have
little impact on the performance of the heuristic.

Remark 2. Our heuristic solution is determined by com-
paring the four candidate solutions, i.e., �Q′� T ′

j �, �Q
′′
j � T

′�,
�Q′� T ′′�, and �Q′′� T ′′�, j = 1� � � � �N . The number of
instances that the heuristic solution is yielded from (Q′� T ′

j ),
�Q′′

j � T
′�, �Q′� T ′′�, and �Q′′� T ′′� is 263, 188, 131, and 155,

respectively. (Note that the sum is not equal to 512 because
some of the candidate solutions are the same.) Thus, we do
not observe that one solution dominates the others. �

To examine whether the heuristic still performs well
when N increases, we consider N = 2�4�6. The sys-
tem parameters are Kj = 20, kj = 5, b ∈ �9�39� and
demand is Poisson with � = 4. We fix h�1�N � = 1 and
test four different forms of holding costs following Zipkin
(2000, p. 313). Specifically, for the linear form, we set
hj = 1/N ; for affine, we set hN = 4 + �1 − 4�/N , hj =
�1 − 4�/N ; for kink, we set �1 − 4�/N for j � N/2 and
�1+ 4�/N for j > N/2; finally, for the jump form, we set
hj = 4+ �1− 4�/N for j = N/2+ 1 and hj = �1− 4�/N
otherwise. Here, we set 4 = 0�75 for all cases. The total
number of instances is 24. Intuitively, the heuristic should
be less effective when N increases because the chance that
the heuristic chooses ineffective clusters is higher. This intu-
ition holds true when b= 39: The average percentage error
for N = 2, 4, and 6 is 0.00%, 0.04%, and 0.11%, respec-
tively. Among all instances, the average percentage error for
N = 2, 4, and 6 is 0.00%, 0.14%, and 0.12%, respectively.
This suggests that our heuristic does not seem to deteriorate
much when N increases. Similar to the N = 3 cases, the
heuristic is particularly effective when k1/h1 and K1/h1 are
large. For example, for the instances with the affine, kink,
and jump forms (18 instances), the average percentage error
is 0.01%, with a maximum of 0.04%.

As stated, the �r� nQ� and �s� T � policies are special
cases of the �r� nQ�T � policy. Specifically, the �r� nQ�

and �s� T � models are the Q-problem and the T -problem
formulated in §3.3 when Tj = 1 and Qj = 1 for all j ,
respectively. We can use the proposed heuristic for each of
the problems to generate a heuristic solution. We provide
two tests that examine the effectiveness of these heuris-
tics. For the �r� nQ� model, we compare our heuristic with
the best heuristic proposed by Chen and Zheng (1998). We
consider the same parameters as those in Tables 1 and 3
of Chen and Zheng. The average (maximum) percentage
error of our heuristic is 0.4% (3.4%), which is less than
the average error of 1.7% (5.1%) obtained by using Chen
and Zheng’s heuristic. For the �s� T � policy, we test the
following parameters: N = 3, Kj ∈ �1�10�, hj ∈ �0�1�1�,
b ∈ �30� h�1�N ��, Lj ∈ �1�3�, and 5= 4. The total number of
instances is 1024. The average percentage error is 0.67%,
with a maximum of 7.30%.

6.3. Comparison of Type I and Type III Models

This section presents a numerical study comparing the
models where setup cost kj is incurred per batch (i.e.,
Type I in Table 1) and incurred per order (i.e., Type III).
The purpose of this comparison is to examine the sen-
sitivity of how the optimal solution in these two models
changes to the changes in the quotient Kj/kj . For both
models, we use the following parameters: N = 3, hj =
0�1, Lj = 1, b = 3, and kj = 40, for j = 1�2�3. We set
K1 =K2 =K3 ∈ �1�5�20�50�. The demand is Poisson with
�= 5. Table 3 shows the optimal solution for these eight
instances.
For the Type I model, T ∗

j and Q∗
j increase in Kj . For

the Type III model, while T ∗
j increases in Kj , interestingly,

Q∗
j remains equal to one except that Q∗

3 = 2 when Kj = 1.
The fact that Q∗

j is smaller in the Type III model may be
explained as follows: When more batches share the same
setup cost kj , Q

∗
j tends to decline. However, it is surpris-

ing to observe that even when kj is much bigger than Kj ,
e.g., kj = 40 and Kj = 5, the optimal batch sizes are still
equal to one. This result suggests that �s� T � policies can
be very effective for companies that order periodically, as
advanced technology, such as flexible manufacturing sys-
tems, has significantly reduced the number of setups in
production.

Table 3. Comparison of the Type I and Type III models.

Kj = 1 Kj = 5 Kj = 20 Kj = 50

Type I III I III I III I III

�Q∗
1� T

∗
1 � �69�3� �1�7� �71�6� �1�10� �74�11� �1�12� �78�16� �1�13�

�Q∗
2� T

∗
2 � �69�3� �1�7� �71�6� �1�10� �74�11� �1�12� �78�16� �1�13�

�Q∗
3� T

∗
3 � �69�3� �2�7� �71�6� �1�10� �74�11� �1�12� �78�16� �1�13�
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7. Conclusion
This paper analyzes a serial inventory system with eche-
lon �r� nQ�T � policies. Previous studies showed how to
evaluate the policy and optimize the echelon reorder points.
This paper provides a simple heuristic for obtaining effec-
tive batch sizes and reorder intervals. This heuristic is based
on solving lower and upper bounds of the total cost func-
tion. We also provide an approach for finding the optimal
batch sizes and reorder intervals. This is achieved by con-
structing cost bounds for each echelon. The stage and ech-
elon cost bounds together generate the bounds for the opti-
mal solution. We then conduct a complete enumeration to
obtain the optimal solution. In a numerical study, we find
that the heuristic performs well in general and is especially
effective when (1) backorder cost is high, or (2) the ratio of
the fixed cost to the echelon holding cost at the most down-
stream stage is large. We also find that when fixed order
costs change, it is often necessary to re-examine both opti-
mal batch sizes and reorder intervals; however, when fixed
setup costs change, it may suffice to adjust batch sizes,
not reorder intervals. This finding suggests that a company
may not need to re-evaluate the ordering/shipping schedule
when the setup costs change due to, say, new technology.
Finally, by considering a special case where the setup cost
is incurred per order, our numerical result suggests that the
�s� T � policy can be very effective. This may explain why
such a policy is prevalent in practice.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. This description is based on private conversations with
EMC2 managers.
2. Due to the PASTA (Wolff 1982) property, the analy-
sis for the periodic-review �r� nQ� model is essentially the
same as that for the continuous-review model with com-
pound Poisson demand. See Chen and Zheng (1994).
3. More specifically, for fixed TN , let QN�TN � =
argminQN

��k�1�N ���/QN + �Gl
N �QN �TN ��. Thus, the left-

hand-side of (23) is further greater than or equal to f �T ∗
N �

def=
�K�1�N �/T

∗
N � + �k�1�N ���/QN �T

∗
N � + �Gl

N �QN �T
∗
N �� T

∗
N �. We

then use f �TN � to construct the solution bounds for
T ∗
N , i.e., �TN = max�TN � f �TN � � Ch − 1N� and T N =
min�TN � f �TN � � Ch − 1N�. We can use the same idea
to construct the solution bounds for Q∗

N and for �Q∗
j � T

∗
j �,

j < N .
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